Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.)

Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and... In situ, non-destructive and real time mineral nutrient stress monitoring is an important aspect of precision farming for rational use of fertilizers. Studies have demonstrated the ability of remote sensing to monitor nitrogen (N) in many crops, phosphorus (P) and potassium (K) in very few crops and none so far to monitor sulphur (S). Specially designed (1) fertility gradient experiment and (2) test crop experiments were used to check the possibility of mineral N–P–S–K stress detection using airborne hyperspectral remote sensing. Leaf and canopy hyperspectral reflectance data and nutrient status at booting stage of the wheat crop were recorded. N–P–S–K sensitive wavelengths were identified using linear correlation analysis. Eight traditional vegetation indices (VIs) and three proposed (one for P and two for S) were evaluated for plant N–P–S–K predictability. A proposed VI (P_1080_1460) predicted P content with high and significant accuracy (correlation coefficient (r) 0.42 and root means square error (RMSE) 0.180 g m−2). Performance of the proposed S VI (S_660_1080) for S concentration and content retrieval was similar whereas prediction accuracies were higher than traditional VIs. Prediction accuracy of linear regressive models improved when biomass-based nutrient contents were considered rather than concentrations. Reflectance in the SWIR region was found to monitor N–P–S–K status in plants in combination with reflectance at either visible (VIS) or near infrared (NIR) region. Newly developed and validated spectral algorithms specific to N, P, S and K can further be used for monitoring in a wheat crop in order to undertake site-specific management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.)

Loading next page...
 
/lp/springer_journal/using-hyperspectral-remote-sensing-techniques-to-monitor-nitrogen-qJ83WA8GSI
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-014-9348-7
Publisher site
See Article on Publisher Site

Abstract

In situ, non-destructive and real time mineral nutrient stress monitoring is an important aspect of precision farming for rational use of fertilizers. Studies have demonstrated the ability of remote sensing to monitor nitrogen (N) in many crops, phosphorus (P) and potassium (K) in very few crops and none so far to monitor sulphur (S). Specially designed (1) fertility gradient experiment and (2) test crop experiments were used to check the possibility of mineral N–P–S–K stress detection using airborne hyperspectral remote sensing. Leaf and canopy hyperspectral reflectance data and nutrient status at booting stage of the wheat crop were recorded. N–P–S–K sensitive wavelengths were identified using linear correlation analysis. Eight traditional vegetation indices (VIs) and three proposed (one for P and two for S) were evaluated for plant N–P–S–K predictability. A proposed VI (P_1080_1460) predicted P content with high and significant accuracy (correlation coefficient (r) 0.42 and root means square error (RMSE) 0.180 g m−2). Performance of the proposed S VI (S_660_1080) for S concentration and content retrieval was similar whereas prediction accuracies were higher than traditional VIs. Prediction accuracy of linear regressive models improved when biomass-based nutrient contents were considered rather than concentrations. Reflectance in the SWIR region was found to monitor N–P–S–K status in plants in combination with reflectance at either visible (VIS) or near infrared (NIR) region. Newly developed and validated spectral algorithms specific to N, P, S and K can further be used for monitoring in a wheat crop in order to undertake site-specific management.

Journal

Precision AgricultureSpringer Journals

Published: Feb 9, 2014

References

  • Spectral characterization and prediction of nutrient content in winter leaves of litchi during flower bud differentiation in southern China
    Chen, S; Li, D; Wang, Y; Peng, Z; Chen, W
  • Use of a green channel in remote sensing of global vegetation from EOS-MODIS
    Gitelson, A; Kaufman, Y; Merzlyak, M

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off