Using geometric spectral subtraction approach for feature extraction for DSR front-end Arabic system

Using geometric spectral subtraction approach for feature extraction for DSR front-end Arabic system Noise robustness and Arabic language are still considered as the main challenges for speech recognition over mobile environments. This paper contributed to these trends by proposing a new robust Distributed Speech Recognition (DSR) system for Arabic language. A speech enhancement algorithm was applied to the noisy speech as a robust front-end pre-processing stage to improve the recognition performance. While an isolated Arabic word engine was designed, and developed using HMM Model to perform the recognition process at the back-end. To test the engine, several conditions including clean, noisy and enhanced noisy speech were investigated together with speaker dependent and speaker independent tasks. With the experiments carried out on noisy database, multi-condition training outperforms the clean training mode in all noise types in terms of recognition rate. The results also indicate that using the enhancement method increases the DSR accuracy of our system under severe noisy conditions especially at low SNR down to 10 dB. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Speech Technology Springer Journals

Using geometric spectral subtraction approach for feature extraction for DSR front-end Arabic system

Loading next page...
 
/lp/springer_journal/using-geometric-spectral-subtraction-approach-for-feature-extraction-G2P2N9tZhx
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Signal,Image and Speech Processing; Social Sciences, general; Artificial Intelligence (incl. Robotics)
ISSN
1381-2416
eISSN
1572-8110
D.O.I.
10.1007/s10772-017-9433-1
Publisher site
See Article on Publisher Site

Abstract

Noise robustness and Arabic language are still considered as the main challenges for speech recognition over mobile environments. This paper contributed to these trends by proposing a new robust Distributed Speech Recognition (DSR) system for Arabic language. A speech enhancement algorithm was applied to the noisy speech as a robust front-end pre-processing stage to improve the recognition performance. While an isolated Arabic word engine was designed, and developed using HMM Model to perform the recognition process at the back-end. To test the engine, several conditions including clean, noisy and enhanced noisy speech were investigated together with speaker dependent and speaker independent tasks. With the experiments carried out on noisy database, multi-condition training outperforms the clean training mode in all noise types in terms of recognition rate. The results also indicate that using the enhancement method increases the DSR accuracy of our system under severe noisy conditions especially at low SNR down to 10 dB.

Journal

International Journal of Speech TechnologySpringer Journals

Published: Jun 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off