Using geometric spectral subtraction approach for feature extraction for DSR front-end Arabic system

Using geometric spectral subtraction approach for feature extraction for DSR front-end Arabic system Noise robustness and Arabic language are still considered as the main challenges for speech recognition over mobile environments. This paper contributed to these trends by proposing a new robust Distributed Speech Recognition (DSR) system for Arabic language. A speech enhancement algorithm was applied to the noisy speech as a robust front-end pre-processing stage to improve the recognition performance. While an isolated Arabic word engine was designed, and developed using HMM Model to perform the recognition process at the back-end. To test the engine, several conditions including clean, noisy and enhanced noisy speech were investigated together with speaker dependent and speaker independent tasks. With the experiments carried out on noisy database, multi-condition training outperforms the clean training mode in all noise types in terms of recognition rate. The results also indicate that using the enhancement method increases the DSR accuracy of our system under severe noisy conditions especially at low SNR down to 10 dB. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Speech Technology Springer Journals

Using geometric spectral subtraction approach for feature extraction for DSR front-end Arabic system

Loading next page...
 
/lp/springer_journal/using-geometric-spectral-subtraction-approach-for-feature-extraction-G2P2N9tZhx
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Signal,Image and Speech Processing; Social Sciences, general; Artificial Intelligence (incl. Robotics)
ISSN
1381-2416
eISSN
1572-8110
D.O.I.
10.1007/s10772-017-9433-1
Publisher site
See Article on Publisher Site

Abstract

Noise robustness and Arabic language are still considered as the main challenges for speech recognition over mobile environments. This paper contributed to these trends by proposing a new robust Distributed Speech Recognition (DSR) system for Arabic language. A speech enhancement algorithm was applied to the noisy speech as a robust front-end pre-processing stage to improve the recognition performance. While an isolated Arabic word engine was designed, and developed using HMM Model to perform the recognition process at the back-end. To test the engine, several conditions including clean, noisy and enhanced noisy speech were investigated together with speaker dependent and speaker independent tasks. With the experiments carried out on noisy database, multi-condition training outperforms the clean training mode in all noise types in terms of recognition rate. The results also indicate that using the enhancement method increases the DSR accuracy of our system under severe noisy conditions especially at low SNR down to 10 dB.

Journal

International Journal of Speech TechnologySpringer Journals

Published: Jun 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off