Using cytochrome b to identify nests and museum specimens of cryptic songbirds

Using cytochrome b to identify nests and museum specimens of cryptic songbirds Understanding demography of vertebrate populations requires quantifying reproductive success. For taxa that are difficult to distinguish, estimates of reproductive success can be biased if species are misidentified or if breeding concludes before identification is confirmed. We surveyed desert grasslands where three species of cryptic sparrows breed: Peucaea botterii, P. cassinii, and Aimophila ruficeps (Emberizidae). Nests, eggs, and nestlings of these species are similar, making it difficult to differentiate nests without observing adults, which can be challenging. We collected seven types of material from nests for DNA analysis: maternal cells from exterior surfaces of unhatched eggs, epithelial cells from the oropharyngeal cavity of nestlings, eggshells, feathers, feather sheaths, feces, and fecal sacs. From these materials, we amplified and sequenced a fragment of the diagnostic locus, mitochondrial cytochrome b (cyt b), and analyzed the data in a phylogenetic framework to classify nests to species. We validated our classification by sequencing the same locus from feathers of museum specimens. Overall, 72% of samples from nests yielded high-quality sequences. We identified to species 44 of 51 nests and identified museum specimens with archival ages of up to 47 years. Our study extends previous research by demonstrating the efficacy of standard kits, inexpensive reagents, low DNA concentrations, and diverse materials in classifying nests of grassland sparrows. Compared to more invasive methods of acquiring DNA, the approaches we describe are less likely to affect nesting behavior and bias estimates of nesting success of birds, issues especially important for species of conservation concern. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Conservation Genetics Resources Springer Journals

Using cytochrome b to identify nests and museum specimens of cryptic songbirds

Loading next page...
 
/lp/springer_journal/using-cytochrome-b-to-identify-nests-and-museum-specimens-of-cryptic-0dfIWJAIq0
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Conservation Biology/Ecology; Ecology; Biodiversity; Evolutionary Biology; Plant Genetics and Genomics; Animal Genetics and Genomics
eISSN
1877-7260
D.O.I.
10.1007/s12686-016-0680-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial