Using colour features of cv. ‘Gala’ apple fruits in an orchard in image processing to predict yield

Using colour features of cv. ‘Gala’ apple fruits in an orchard in image processing to predict... New apple fruit recognition algorithms based on colour features are presented to estimate the number of fruits and develop models for early prediction of apple yield, in a multi-disciplinary approach linking computer science with agricultural engineering and horticulture as part of precision agriculture. Fifty cv. ‘Gala’ apple digital images were captured twice, i.e. after June drop and during ripening, on the preferred western side of the tree row with a variability of between 70 and 170 fruit per tree, under natural daylight conditions at Bonn, Germany. Several image processing algorithms and fruit counting algorithms were used to analyse the apple images. Finally, an apple recognition algorithm with colour difference R − B (red minus blue) and G − R (green minus red) was developed for apple images after June drop, and two different colour models were used to segment ripening period apple images. The algorithm was tested on 50 images of trees in each period. Close correlation coefficients R 2 of 0.80 and 0.85 were obtained for two developmental periods between apples detected by the fruit counting algorithm and those manually counted. Two sets of data in each period were used for modelling yield prediction of the apple fruits. In the calibration data set, the R 2 values between apples detected by the fruit counting algorithm and actual harvested yield were from 0.57 for young fruit after June drop to 0.70 in the fruit ripening period. In the validation data set, the R 2 value between the number of apples predicted by the model and actual yield at harvest ranged from 0.58 to 0.71. The proposed model showed great potential for early prediction of yield for individual trees of apple and possibly other fruit crops. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Using colour features of cv. ‘Gala’ apple fruits in an orchard in image processing to predict yield

Loading next page...
1
 
/lp/springer_journal/using-colour-features-of-cv-gala-apple-fruits-in-an-orchard-in-image-UrIvVYwGVH
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-012-9269-2
Publisher site
See Article on Publisher Site

Abstract

New apple fruit recognition algorithms based on colour features are presented to estimate the number of fruits and develop models for early prediction of apple yield, in a multi-disciplinary approach linking computer science with agricultural engineering and horticulture as part of precision agriculture. Fifty cv. ‘Gala’ apple digital images were captured twice, i.e. after June drop and during ripening, on the preferred western side of the tree row with a variability of between 70 and 170 fruit per tree, under natural daylight conditions at Bonn, Germany. Several image processing algorithms and fruit counting algorithms were used to analyse the apple images. Finally, an apple recognition algorithm with colour difference R − B (red minus blue) and G − R (green minus red) was developed for apple images after June drop, and two different colour models were used to segment ripening period apple images. The algorithm was tested on 50 images of trees in each period. Close correlation coefficients R 2 of 0.80 and 0.85 were obtained for two developmental periods between apples detected by the fruit counting algorithm and those manually counted. Two sets of data in each period were used for modelling yield prediction of the apple fruits. In the calibration data set, the R 2 values between apples detected by the fruit counting algorithm and actual harvested yield were from 0.57 for young fruit after June drop to 0.70 in the fruit ripening period. In the validation data set, the R 2 value between the number of apples predicted by the model and actual yield at harvest ranged from 0.58 to 0.71. The proposed model showed great potential for early prediction of yield for individual trees of apple and possibly other fruit crops.

Journal

Precision AgricultureSpringer Journals

Published: Jun 9, 2012

References

  • Yield prediction in apple orchards based on image processing
    Aggelopoulou, AD; Bochtis, D; Fountas, S; Swain, KC; Gemtos, TA; Nanos, GD

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off