Using Cointegration Restrictions to Improve Inference in Vector Autoregressive Systems

Using Cointegration Restrictions to Improve Inference in Vector Autoregressive Systems An improved way of dealing with uncertain prior information in the context of vector autoregressive systems of equations is proposed. The procedure is appropriate when inference about parameters of a cointegrated system is the aim of the analysis. The estimator uses uncertain prior information about the existence of trends and co-trends in the time series to improve parameter estimation within these systems. The improved estimator eliminates the need to carry out the unit root, cointegration, and parameter restriction pretests and is shown in our Monte Carlo experiments to have good statistical properties in small samples. The pretest, maximum likelihood, and restricted maximum likelihood estimators are compared to the proposed estimator based on squared error risk, mean square error of prediction risk, and out-of-sample root-mean-square forecast error. The Monte Carlo simulations are based on actual economic data collected for eurodollar futures contracts. The evidence suggests that the parameters of vector autoregressive systems can be estimated with lower mean square error with the new estimator even when prior guesses about the nature of the cointegrating vector(s) are incorrect. In-sample prediction is likewise improved. The Monte Carlo simulations are based on eurodollar spot and futures market data that has been used to test the “unbiased expectations” hypothesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

Using Cointegration Restrictions to Improve Inference in Vector Autoregressive Systems

Loading next page...
 
/lp/springer_journal/using-cointegration-restrictions-to-improve-inference-in-vector-SukENNHOai
Publisher
Springer Journals
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1023/A:1008359830366
Publisher site
See Article on Publisher Site

Abstract

An improved way of dealing with uncertain prior information in the context of vector autoregressive systems of equations is proposed. The procedure is appropriate when inference about parameters of a cointegrated system is the aim of the analysis. The estimator uses uncertain prior information about the existence of trends and co-trends in the time series to improve parameter estimation within these systems. The improved estimator eliminates the need to carry out the unit root, cointegration, and parameter restriction pretests and is shown in our Monte Carlo experiments to have good statistical properties in small samples. The pretest, maximum likelihood, and restricted maximum likelihood estimators are compared to the proposed estimator based on squared error risk, mean square error of prediction risk, and out-of-sample root-mean-square forecast error. The Monte Carlo simulations are based on actual economic data collected for eurodollar futures contracts. The evidence suggests that the parameters of vector autoregressive systems can be estimated with lower mean square error with the new estimator even when prior guesses about the nature of the cointegrating vector(s) are incorrect. In-sample prediction is likewise improved. The Monte Carlo simulations are based on eurodollar spot and futures market data that has been used to test the “unbiased expectations” hypothesis.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Oct 8, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off