Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content

Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay... The adoption of precision viticulture requires a detailed knowledge of variation in soil chemical, physical and profile properties. This study evaluates the usefulness of apparent electrical conductivity (ECa) data within a GIS framework to identify variations in soil chemical and physical properties and moisture content. The work was conducted in a vineyard located in the Carneros Region (Napa Valley, California). The soil was sampled using 44 boreholes to quantify chemical and physical characteristics and 9 open pits to verify the borehole observations. Moisture content was determined using time domain reflectometry (TDR). To characterize soil ECa, three campaigns were undertaken using a soil electrical conductivity meter (EM38). Linear regressions between soil ECa and soil properties were determined. Boreholes and TDR data were interpolated by kriging to characterize the spatial distribution of soil variables. The resulting maps were compared to the results obtained using the best ECa linear regressions. Using ECa measurements, soil properties like extractable Na+ and Mg2+, clay and sand content were well estimated, while best estimates were obtained for extractable Na+ (r 2  = 0.770) and clay content (r 2  = 0.621). The best estimates for soil moisture content corresponded to moisture in the deeper soil horizons (r 2  = 0.449). The methods described above provided maps of soil properties estimated by ECa in a GIS framework, and could save time and resources during vineyard establishment and management. Precision Agriculture Springer Journals

Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content

Loading next page...
Springer US
Copyright © 2011 by The Author(s)
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


  • The potential of high spatial resolution information to define within-vineyard zones related to vine water status
    Acevedo-Opazo, C; Tisseyre, B; Guillaume, S; Ojeda, H

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial