Using active canopy sensors and chlorophyll meters to estimate grapevine nitrogen status and productivity

Using active canopy sensors and chlorophyll meters to estimate grapevine nitrogen status and... Effects of nitrogen (Ν) and water supply on grapevine leaf transmittance and canopy reflectance were studied over 2 years (2009–2010) in two vineyards planted with cvs. Cabernet Sauvignon and Xinomavro (Vitis vinifera L.) located in northern Greece. Three N (0, 60 and 120 kg ha−1) and two irrigation (irrigated at 70 % of crop evapotranspiration and non-irrigated) treatments were managed in triplicate in randomized blocks. Measurements with two transmittance-based chlorophyll meters (CM: SPAD-502 and CCM-200) and two active canopy sensors (Crop Circle ACS-210; amber band and Crop Circle ACS-430; red and red edge bands) were conducted on four and two growth stages, respectively. Fertilization increased leaf N and chlorophyll concentrations, as well as CM readings and vegetation indices. The CCM and SPAD values did not vary across growth stages and better estimated leaf N and chlorophyll concentrations in Cabernet Sauvignon than in Xinomavro. The SPAD readings provided better predictions of leaf N concentration. The vegetation indices of the ACS-430 sensor correlated with leaf N and chlorophyll concentrations and dormant wood in Cabernet Sauvignon; the red edge-based indices were generally more efficient than the red-based indices. Consistent relationships were observed for all ACS-430 indices with yield and for red edge-based indices with total phenols early in the season for both vineyards. The correlation between ACS-210 sensor indices and vine properties was low. These results showed that the two technologies examined could provide information on grapevine performance early in the season but have limitations that may restrict their use in vineyards because the acquired relationships were not consistent across vineyards and instruments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Using active canopy sensors and chlorophyll meters to estimate grapevine nitrogen status and productivity

Loading next page...
 
/lp/springer_journal/using-active-canopy-sensors-and-chlorophyll-meters-to-estimate-vDn62WD07V
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-014-9363-8
Publisher site
See Article on Publisher Site

Abstract

Effects of nitrogen (Ν) and water supply on grapevine leaf transmittance and canopy reflectance were studied over 2 years (2009–2010) in two vineyards planted with cvs. Cabernet Sauvignon and Xinomavro (Vitis vinifera L.) located in northern Greece. Three N (0, 60 and 120 kg ha−1) and two irrigation (irrigated at 70 % of crop evapotranspiration and non-irrigated) treatments were managed in triplicate in randomized blocks. Measurements with two transmittance-based chlorophyll meters (CM: SPAD-502 and CCM-200) and two active canopy sensors (Crop Circle ACS-210; amber band and Crop Circle ACS-430; red and red edge bands) were conducted on four and two growth stages, respectively. Fertilization increased leaf N and chlorophyll concentrations, as well as CM readings and vegetation indices. The CCM and SPAD values did not vary across growth stages and better estimated leaf N and chlorophyll concentrations in Cabernet Sauvignon than in Xinomavro. The SPAD readings provided better predictions of leaf N concentration. The vegetation indices of the ACS-430 sensor correlated with leaf N and chlorophyll concentrations and dormant wood in Cabernet Sauvignon; the red edge-based indices were generally more efficient than the red-based indices. Consistent relationships were observed for all ACS-430 indices with yield and for red edge-based indices with total phenols early in the season for both vineyards. The correlation between ACS-210 sensor indices and vine properties was low. These results showed that the two technologies examined could provide information on grapevine performance early in the season but have limitations that may restrict their use in vineyards because the acquired relationships were not consistent across vineyards and instruments.

Journal

Precision AgricultureSpringer Journals

Published: Jul 5, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off