Using a robust variogram to find an adequate butterfly neighborhood size for one-step yield mapping using robust fitting paraboloid cones

Using a robust variogram to find an adequate butterfly neighborhood size for one-step yield... The yield map is generated by fitting the yield surface shape of yield monitor data mainly using paraboloid cones on floating neighborhoods. Each yield map value is determined by the fit of such a cone on a neighborhood that looks like a huge butterfly flying along the harvest track. Wide wings of the butterfly guarantee that the map is sufficiently smoothed out across the tracks. The coefficients of regression for modeling the paraboloid cones and the scale parameter are estimated using robust weighted M-estimators where the weights decrease with the distance from one to zero; the latter is at the border of the selected neighborhood. The robust way of estimating the model parameters supersedes a procedure for detecting outliers. For a given neighborhood size, this yield mapping method is implemented by the Fortran program butterflymap.exe , which can be downloaded from the web. To obtain the appropriate size of the selected neighborhood, the variance of the yield map values should equal the variance of the true yields, which is the difference between the variance of the raw yield data and the error variance of the yield monitor. It is estimated using a robust variogram on data that have not had the trend removed. Based on investigating butterfly neighborhoods the yield map was optimized if the search radius across the harvest tracks was eight times the swath width. One reason for this wide neighborhood is that the regression used for modeling the paraboloid cones is based on weights that decrease linearly from 1 in the middle to zero at the border of the neighborhood, so only data points close to the middle have a large weight. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Using a robust variogram to find an adequate butterfly neighborhood size for one-step yield mapping using robust fitting paraboloid cones

Loading next page...
 
/lp/springer_journal/using-a-robust-variogram-to-find-an-adequate-butterfly-neighborhood-g0GxTU50q7
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-006-9030-9
Publisher site
See Article on Publisher Site

Abstract

The yield map is generated by fitting the yield surface shape of yield monitor data mainly using paraboloid cones on floating neighborhoods. Each yield map value is determined by the fit of such a cone on a neighborhood that looks like a huge butterfly flying along the harvest track. Wide wings of the butterfly guarantee that the map is sufficiently smoothed out across the tracks. The coefficients of regression for modeling the paraboloid cones and the scale parameter are estimated using robust weighted M-estimators where the weights decrease with the distance from one to zero; the latter is at the border of the selected neighborhood. The robust way of estimating the model parameters supersedes a procedure for detecting outliers. For a given neighborhood size, this yield mapping method is implemented by the Fortran program butterflymap.exe , which can be downloaded from the web. To obtain the appropriate size of the selected neighborhood, the variance of the yield map values should equal the variance of the true yields, which is the difference between the variance of the raw yield data and the error variance of the yield monitor. It is estimated using a robust variogram on data that have not had the trend removed. Based on investigating butterfly neighborhoods the yield map was optimized if the search radius across the harvest tracks was eight times the swath width. One reason for this wide neighborhood is that the regression used for modeling the paraboloid cones is based on weights that decrease linearly from 1 in the middle to zero at the border of the neighborhood, so only data points close to the middle have a large weight.

Journal

Precision AgricultureSpringer Journals

Published: Feb 15, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off