Using a Risk-based Approach for Derivation of Water Quality Guidelines for Sulphate

Using a Risk-based Approach for Derivation of Water Quality Guidelines for Sulphate Sulphate is a major salt component in acid mine drainage and a crucial ecological concern in most coal and gold mining regions, globally. However, there remains a paucity of data on sulphate salinity toxicity on freshwater taxa. In this study, we hypothesised sensitivity differences for five freshwater species (Adenophlebia auriculata, Burnupia stenochorias, Caridina nilotica, Pseudokirchneriella subcapitata, and Oreochromis mossambicus) to increasing sulphate salinity concentrations after 240 h of exposure. Species sensitivity distributions (SSDs) were used to rank the sensitivity of tested species to the inorganic sulphate salts, which included magnesium sulphate (MgSO4), sodium sulphate (Na2SO4), and calcium sulphate (CaSO4) as models of mining salinisation in South Africa. The SSDs were also used to estimate appropriate protective concentrations of the salts for the tested species. Sensitivity differences were measured and Na2SO4 was the most toxic of the tested salts. A concentration of 0.020 g/L Na2SO4, 0.055 g/L CaSO4, and 0.108 g/L MgSO4 or a combined salts limit of 0.067 g/L would be protective of 95% of the populations of the five species tested; these all suggest that the 0.25 g/L compliance limit for South Africa is insufficient. Future studies should incorporate more species in the SSD approach to be coupled by field validations to further improve the ecological relevance of these findings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mine Water and the Environment Springer Journals

Using a Risk-based Approach for Derivation of Water Quality Guidelines for Sulphate

Loading next page...
 
/lp/springer_journal/using-a-risk-based-approach-for-derivation-of-water-quality-guidelines-cpZjueUb7v
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Water Quality/Water Pollution; Hydrogeology; Mineral Resources; Ecotoxicology; Industrial Pollution Prevention
ISSN
1025-9112
eISSN
1616-1068
D.O.I.
10.1007/s10230-017-0480-2
Publisher site
See Article on Publisher Site

Abstract

Sulphate is a major salt component in acid mine drainage and a crucial ecological concern in most coal and gold mining regions, globally. However, there remains a paucity of data on sulphate salinity toxicity on freshwater taxa. In this study, we hypothesised sensitivity differences for five freshwater species (Adenophlebia auriculata, Burnupia stenochorias, Caridina nilotica, Pseudokirchneriella subcapitata, and Oreochromis mossambicus) to increasing sulphate salinity concentrations after 240 h of exposure. Species sensitivity distributions (SSDs) were used to rank the sensitivity of tested species to the inorganic sulphate salts, which included magnesium sulphate (MgSO4), sodium sulphate (Na2SO4), and calcium sulphate (CaSO4) as models of mining salinisation in South Africa. The SSDs were also used to estimate appropriate protective concentrations of the salts for the tested species. Sensitivity differences were measured and Na2SO4 was the most toxic of the tested salts. A concentration of 0.020 g/L Na2SO4, 0.055 g/L CaSO4, and 0.108 g/L MgSO4 or a combined salts limit of 0.067 g/L would be protective of 95% of the populations of the five species tested; these all suggest that the 0.25 g/L compliance limit for South Africa is insufficient. Future studies should incorporate more species in the SSD approach to be coupled by field validations to further improve the ecological relevance of these findings.

Journal

Mine Water and the EnvironmentSpringer Journals

Published: Aug 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off