User specific context construction for personalized multimedia retrieval

User specific context construction for personalized multimedia retrieval The onset of Web 2.0 has given the freedom of tagging to the users. The popularization of social networking and the expansion of the smartphone market in the past decade has led to an increase of data being accumulated on the social media platforms, particularly images and videos. The exponential and ever increasing data have made information retrieval cumbersome, especially for the social network users, and this has turned out to be a huge challenge in the evolution of algorithms and technologies. In this paper, we present a novel framework and techniques for retrieving user’s multimedia content like images from the user’s profile using the context of the image/media file. We apply the Logical Itemset mining on the image Metadata consisting of the textual data (Hashtags, Caption, Date and Time) associated with the images. Through this work, we intend to bridge the semantic gap between the images and the data representation that the user associated with them. Our framework also addresses the paraphrase problem of variation in words (synonyms) used to describe a context of a media file. To evaluate the applicability of our framework, we performed tests on large Instagram image dataset extracted from various user profiles containing monolingual metadata, which show promising results for real-time applications. Furthermore, we compare and evaluate our framework with another context-based image retrieval framework, Krumbs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

User specific context construction for personalized multimedia retrieval

Loading next page...
 
/lp/springer_journal/user-specific-context-construction-for-personalized-multimedia-PZbaa4oG23
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4961-x
Publisher site
See Article on Publisher Site

Abstract

The onset of Web 2.0 has given the freedom of tagging to the users. The popularization of social networking and the expansion of the smartphone market in the past decade has led to an increase of data being accumulated on the social media platforms, particularly images and videos. The exponential and ever increasing data have made information retrieval cumbersome, especially for the social network users, and this has turned out to be a huge challenge in the evolution of algorithms and technologies. In this paper, we present a novel framework and techniques for retrieving user’s multimedia content like images from the user’s profile using the context of the image/media file. We apply the Logical Itemset mining on the image Metadata consisting of the textual data (Hashtags, Caption, Date and Time) associated with the images. Through this work, we intend to bridge the semantic gap between the images and the data representation that the user associated with them. Our framework also addresses the paraphrase problem of variation in words (synonyms) used to describe a context of a media file. To evaluate the applicability of our framework, we performed tests on large Instagram image dataset extracted from various user profiles containing monolingual metadata, which show promising results for real-time applications. Furthermore, we compare and evaluate our framework with another context-based image retrieval framework, Krumbs.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Jul 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off