User-cognizant multidimensional analysis

User-cognizant multidimensional analysis Our goal is to enhance multidimensional database systems with a suite of advanced operators to automate data analysis tasks that are currently handled through manual exploration. In this paper, we present a key component of our system that characterizes the information content of a cell based on a user's prior familiarity with the cube and provides a context-sensitive exploration of the cube. There are three main modules of this component. A Tracker, that continuously tracks the parts of the cube that a user has visited. A Modeler, that pieces together the information in the visited parts to model the user's expected values in the unvisited parts. An Informer, that processes user's queries about the most informative unvisited parts of the cube. The mathematical basis for the expected value modeling is provided by the classical maximum entropy principle. Accordingly, the expected values are computed so as to agree with every value that is already visited while reducing assumptions about unvisited values to the minimum by maximizing their entropy. The most informative values are defined as those that bring the new expected values closest to the actual values. We believe and prove through experiments that such a user-in-the-loop exploration will enable much faster assimilation of all significant information in the data compared to existing manual explorations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

User-cognizant multidimensional analysis

Loading next page...
 
/lp/springer_journal/user-cognizant-multidimensional-analysis-a0lA40y5Jd
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s007780100046
Publisher site
See Article on Publisher Site

Abstract

Our goal is to enhance multidimensional database systems with a suite of advanced operators to automate data analysis tasks that are currently handled through manual exploration. In this paper, we present a key component of our system that characterizes the information content of a cell based on a user's prior familiarity with the cube and provides a context-sensitive exploration of the cube. There are three main modules of this component. A Tracker, that continuously tracks the parts of the cube that a user has visited. A Modeler, that pieces together the information in the visited parts to model the user's expected values in the unvisited parts. An Informer, that processes user's queries about the most informative unvisited parts of the cube. The mathematical basis for the expected value modeling is provided by the classical maximum entropy principle. Accordingly, the expected values are computed so as to agree with every value that is already visited while reducing assumptions about unvisited values to the minimum by maximizing their entropy. The most informative values are defined as those that bring the new expected values closest to the actual values. We believe and prove through experiments that such a user-in-the-loop exploration will enable much faster assimilation of all significant information in the data compared to existing manual explorations.

Journal

The VLDB JournalSpringer Journals

Published: Sep 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off