Use of soil moisture data for refined GreenSeeker sensor based nitrogen recommendations in winter wheat (Triticum aestivum L.)

Use of soil moisture data for refined GreenSeeker sensor based nitrogen recommendations in winter... Previous studies have shown the importance of soil moisture (SM) in estimating crop yield potential (YP). The sensor based nitrogen (N) rate calculator (SBNRC) developed by Oklahoma State University utilizes the Normalized Difference Vegetation Index (NDVI) and the in-season estimated yield (INSEY) as the estimate of biomass to assess YP and to generate N recommendations based on estimated crop need. The objective was to investigate whether including the SM parameter into SBNRC could help to increase the accuracy of YP prediction and improve N rate recommendations. Two experimental sites (Lahoma and Perkins) in Oklahoma were established in 2006/07 and 2007/08. Wheat spectral reflectance was measured using a GreenSeeker™ 505 hand-held optical sensor (N-Tech Industries, Ukiah, CA). Soil–water content measured with matric potential 229-L sensors (Campbell Scientific, Logan, UT) was used to determine volumetric water content and fractional water index. The relationships between NDVI, INSEY and SM indices at planting and sensing at 5, 25, 60 and 75-cm depths versus grain yield (GY) were evaluated. Wheat GY, NDVI at Feekes 5 and soil WC at planting and as sensed at three depths were also analyzed for eight consecutive growing seasons (1999–2006) for Lahoma. Incorporation of SM into NDVI and INSEY calculations resulted in equally good prediction of wheat GY for all site-years. This indicates that NDVI alone was able to account for the lack of SM information and thus lower crop YP. Soil moisture data, especially at the time of sensing at the 5-cm depth could assist in refining winter wheat YP prediction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Use of soil moisture data for refined GreenSeeker sensor based nitrogen recommendations in winter wheat (Triticum aestivum L.)

Loading next page...
 
/lp/springer_journal/use-of-soil-moisture-data-for-refined-greenseeker-sensor-based-M0g952WwsA
Publisher
Springer US
Copyright
Copyright © 2012 by The Author(s)
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-012-9299-9
Publisher site
See Article on Publisher Site

Abstract

Previous studies have shown the importance of soil moisture (SM) in estimating crop yield potential (YP). The sensor based nitrogen (N) rate calculator (SBNRC) developed by Oklahoma State University utilizes the Normalized Difference Vegetation Index (NDVI) and the in-season estimated yield (INSEY) as the estimate of biomass to assess YP and to generate N recommendations based on estimated crop need. The objective was to investigate whether including the SM parameter into SBNRC could help to increase the accuracy of YP prediction and improve N rate recommendations. Two experimental sites (Lahoma and Perkins) in Oklahoma were established in 2006/07 and 2007/08. Wheat spectral reflectance was measured using a GreenSeeker™ 505 hand-held optical sensor (N-Tech Industries, Ukiah, CA). Soil–water content measured with matric potential 229-L sensors (Campbell Scientific, Logan, UT) was used to determine volumetric water content and fractional water index. The relationships between NDVI, INSEY and SM indices at planting and sensing at 5, 25, 60 and 75-cm depths versus grain yield (GY) were evaluated. Wheat GY, NDVI at Feekes 5 and soil WC at planting and as sensed at three depths were also analyzed for eight consecutive growing seasons (1999–2006) for Lahoma. Incorporation of SM into NDVI and INSEY calculations resulted in equally good prediction of wheat GY for all site-years. This indicates that NDVI alone was able to account for the lack of SM information and thus lower crop YP. Soil moisture data, especially at the time of sensing at the 5-cm depth could assist in refining winter wheat YP prediction.

Journal

Precision AgricultureSpringer Journals

Published: Dec 19, 2012

References

  • Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance
    Daughtry, CST; Walthall, CL; Kim, MS; Brown de Colstoun, E; McMurtrey, JE
  • Independence of yield potential and crop nitrogen response
    Raun, WR; Solie, JB; Stone, ML

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off