Use of PIV to highlight possible errors in hot-wire Reynolds stress data over a 2D rough wall

Use of PIV to highlight possible errors in hot-wire Reynolds stress data over a 2D rough wall Particle image velocimetry (PIV) measurements are carried out in a turbulent boundary layer over a 2D rough surface consisting of transverse square bars. The aim of this work is to investigate a possible cause for the near-wall X-wire measurement errors observed on similar rough surfaces. The PIV measurements do not show the anomalous near-wall deficit of Reynolds stresses as measured with X-wires over the same surface. An extensive flow visualization analysis of the PIV data for a spacing between the roughness elements of p = 7k (k is the roughness element height) shows the occurrence of large-scale inward (sweeps) and outward (ejections) motions with a period of about 10.6δ/U 0 (δ and U 0 are the boundary layer thickness and the free-stream velocity). While these motions dominate the near-wall region and contribute almost equally to the Reynolds shear stress −‹uv›, the mean outward deviation from the mean flow direction is stronger than the inward deviation. Also, when the roughness spacing is reduced to p = 3k, the outward deviation reduces significantly more than the inward deviation. The results support the argument that the outward motions, which can have an instantaneous deviation angle of more than 50° in the case p = 7k, make the X-wire probe inefficient for detecting the ejection events (associated with the outward motions), particularly if the apex angle of the X-wire is not optimized for capturing the strong flow ejections with large deviations. The results explain in part the disparate information on the effect of the roughness on the Reynolds stresses in the outer region of the turbulent boundary layer over rough walls. Experiments in Fluids Springer Journals

Use of PIV to highlight possible errors in hot-wire Reynolds stress data over a 2D rough wall

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial