Use of particle image velocimetry to study heterogeneous drag reduction

Use of particle image velocimetry to study heterogeneous drag reduction Large polymer filaments can form when drag reducing polymers are injected through wall slots. The presence of these structures enhances the performance of the drag reducing function by mechanisms which are not understood. This paper shows how particle image velocimetry (PIV) techniques can be used to study changes in the configuration of the injected polymer and in the structure of the velocity field with increasing drag reduction. The filaments are found to behave as solid bodies which break up in high shear regions close to a boundary. The breakup process provides an explanation of why the filaments are not observed close to a wall and offers the possibility of providing a heterogeneous distribution of small aggregates of polymers which could be more effective than uniformly distributed molecules as suggested by Hoyer and Gyr (J Non-Newton Fluid Mech 65:221–240, 1996; J Fluids Eng 120:818–823, 1998), Dunlop and Cox (Phys Fluids 20:203–213, 1977) and Vlachogiannis et al. (Phys Fluid 15:3786–3794, 2004). PIV measurements show dramatic qualitative changes in the velocity patterns at maximum drag reduction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Use of particle image velocimetry to study heterogeneous drag reduction

Loading next page...
 
/lp/springer_journal/use-of-particle-image-velocimetry-to-study-heterogeneous-drag-CvUFvVKTpx
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0970-z
Publisher site
See Article on Publisher Site

Abstract

Large polymer filaments can form when drag reducing polymers are injected through wall slots. The presence of these structures enhances the performance of the drag reducing function by mechanisms which are not understood. This paper shows how particle image velocimetry (PIV) techniques can be used to study changes in the configuration of the injected polymer and in the structure of the velocity field with increasing drag reduction. The filaments are found to behave as solid bodies which break up in high shear regions close to a boundary. The breakup process provides an explanation of why the filaments are not observed close to a wall and offers the possibility of providing a heterogeneous distribution of small aggregates of polymers which could be more effective than uniformly distributed molecules as suggested by Hoyer and Gyr (J Non-Newton Fluid Mech 65:221–240, 1996; J Fluids Eng 120:818–823, 1998), Dunlop and Cox (Phys Fluids 20:203–213, 1977) and Vlachogiannis et al. (Phys Fluid 15:3786–3794, 2004). PIV measurements show dramatic qualitative changes in the velocity patterns at maximum drag reduction.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 6, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off