Use of multi-spectral airborne imagery to improve yield sampling in viticulture

Use of multi-spectral airborne imagery to improve yield sampling in viticulture The wine industry needs to know the yield of each vine field precisely to optimize quality management and limit the costs of harvest operations. Yield estimation is usually based on random vine sampling. The resulting estimations are often not precise enough because of the high variability within vineyard fields. The aim of the work was to study the relevance of using NDVI-based sampling strategies to improve estimation of mean field yield. The study was conducted in nine non-irrigated vine fields located in southern France. For each field, NDVI was derived from multi-spectral airborne images. The variables which define the yield: [berry weight at harvest (BWh), bunch number per vine (BuN) and berry number per bunch (BN)] were measured on a regular grid. This data-base allowed for five different sampling schemes to be tested. These sampling methods were mainly based on a stratification of NDVI values, they differed in the way as to whether NDVI was used as ancillary information to design a sampling strategy for BuN, BN, BW or for all yield variables together. Results showed a significant linear relationship between NDVI and BW, indicating the interest of using NDVI information to optimize sampling for this parameter. However this result is mitigated by the low incidence of BW in the yield variance (4 %) within the field. Other yield components, BuN and BN explain a higher percentage of yield variance (60 and 11 % respectively) but did not show any clear relationship with NDVI. A large difference was observed between fields, which justifies testing the optimized sampling methods on all of them and for all yield variables. On average, sampling methods based on NDVI systematically improved vine field yield estimates by at least 5–7 % compared to the random method. Depending on the fields, error improvement ranged from −2 to 15 %. Based on these results, the practical recommendation is to consider a two-step sampling method where BuN is randomly sampled and BW is sampled according to the NDVI values. Precision Agriculture Springer Journals

Use of multi-spectral airborne imagery to improve yield sampling in viticulture

Loading next page...
Springer US
Copyright © 2015 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


  • The potential of high spatial resolution information to define within-vineyard zones related to vine water status
    Acevedo-Opazo, C; Tisseyre, B; Guillaume, S; Ojeda, H

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial