Use of in silico models for prioritization of heat-induced food contaminants in mutagenicity and carcinogenicity testing

Use of in silico models for prioritization of heat-induced food contaminants in mutagenicity and... Numerous Maillard reaction and lipid oxidation products are present in processed foods such as heated cereals, roasted meat, refined oils, coffee, and juices. Due to the lack of experimental toxicological data, risk assessment is hardly possible for most of these compounds. In the present study, an in silico approach was employed for the prediction of the toxicological endpoints mutagenicity and carcinogenicity on the basis of the structure of the respective compound, to examine (quantitative) structure–activity relationships for more than 800 compounds. Five software tools for mutagenicity prediction (T.E.S.T., SARpy, CAESAR, Benigni-Bossa, and LAZAR) and three carcinogenicity prediction tools (CAESAR, Benigni-Bossa, and LAZAR) were combined to yield so-called mutagenic or carcinogenic scores for every single substance. Alcohols, ketones, acids, lactones, and esters were predicted to be mutagenic and carcinogenic with low probability, whereas the software tools tended to predict a considerable mutagenic and carcinogenic potential for thiazoles. To verify the in silico predictions for the endpoint mutagenicity experimentally, twelve selected compounds were examined for their mutagenic potential using two different validated in vitro test systems, the bacterial reverse mutation assay (Ames test) and the in vitro micronucleus assay. There was a good correlation between the results of the Ames test and the in silico predictions. However, in the case of the micronucleus assay, at least three substances, 2-amino-6-methylpyridine, 6-heptenoic acid, and 2-methylphenol, were clearly positive although they were predicted to be non-mutagenic. Thus, software tools for mutagenicity prediction are suitable for prioritization among large numbers of substances, but these predictions still need experimental verification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Toxicology Springer Journals

Use of in silico models for prioritization of heat-induced food contaminants in mutagenicity and carcinogenicity testing

Loading next page...
 
/lp/springer_journal/use-of-in-silico-models-for-prioritization-of-heat-induced-food-xEOgQ800hs
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Biomedicine; Pharmacology/Toxicology; Occupational Medicine/Industrial Medicine; Environmental Health; Biomedicine, general
ISSN
0340-5761
eISSN
1432-0738
D.O.I.
10.1007/s00204-016-1924-3
Publisher site
See Article on Publisher Site

Abstract

Numerous Maillard reaction and lipid oxidation products are present in processed foods such as heated cereals, roasted meat, refined oils, coffee, and juices. Due to the lack of experimental toxicological data, risk assessment is hardly possible for most of these compounds. In the present study, an in silico approach was employed for the prediction of the toxicological endpoints mutagenicity and carcinogenicity on the basis of the structure of the respective compound, to examine (quantitative) structure–activity relationships for more than 800 compounds. Five software tools for mutagenicity prediction (T.E.S.T., SARpy, CAESAR, Benigni-Bossa, and LAZAR) and three carcinogenicity prediction tools (CAESAR, Benigni-Bossa, and LAZAR) were combined to yield so-called mutagenic or carcinogenic scores for every single substance. Alcohols, ketones, acids, lactones, and esters were predicted to be mutagenic and carcinogenic with low probability, whereas the software tools tended to predict a considerable mutagenic and carcinogenic potential for thiazoles. To verify the in silico predictions for the endpoint mutagenicity experimentally, twelve selected compounds were examined for their mutagenic potential using two different validated in vitro test systems, the bacterial reverse mutation assay (Ames test) and the in vitro micronucleus assay. There was a good correlation between the results of the Ames test and the in silico predictions. However, in the case of the micronucleus assay, at least three substances, 2-amino-6-methylpyridine, 6-heptenoic acid, and 2-methylphenol, were clearly positive although they were predicted to be non-mutagenic. Thus, software tools for mutagenicity prediction are suitable for prioritization among large numbers of substances, but these predictions still need experimental verification.

Journal

Archives of ToxicologySpringer Journals

Published: Jan 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off