Use of hydroxylapatite composite membranes for analysis of bisphenol A

Use of hydroxylapatite composite membranes for analysis of bisphenol A This study evaluates solid-phase micro-extraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS) to determine trace levels of bis-phenol A in water and leached from plastic containers. In our study, we used very thin composite membranes prepared in the laboratory. The extraction using headspace post-derivatization with bis(trimethylsilyl) trifluoroacetamide (BSTFA), containing 1 % trimethylchlorosilane (TMCS) vapor, following SPME was compared with extraction without derivatization. The SPME experimental procedures to extract bis-phenol A in water were optimized with a relatively polar polyacrylate (PA)-coated fiber, an extraction time of 50 min, and desorption at 300 °C for 2 min. Headspace derivatization following SPME was performed using 7 μL of BSTFA with 1 % TMCS at 65 °C for 30 s. The precision was 5.2 % without derivatization and 9.0 % headspace derivatization. The detection limit was determined to be at the nanogram per liter level. When SPME was used following headspace derivatization, the detection limit was one order of magnitude better than that achieved without derivatization. The results of this study reveal the adequacy of the SPME–GC–MS method for analyzing bisphenol A leached from plastic containers. The concentrations of bisphenol A leached from plastic containers into water ranged from 0.7 to 78.5 μg L−1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Use of hydroxylapatite composite membranes for analysis of bisphenol A

Loading next page...
 
/lp/springer_journal/use-of-hydroxylapatite-composite-membranes-for-analysis-of-bisphenol-a-A50bUVMy13
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1115-2
Publisher site
See Article on Publisher Site

Abstract

This study evaluates solid-phase micro-extraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS) to determine trace levels of bis-phenol A in water and leached from plastic containers. In our study, we used very thin composite membranes prepared in the laboratory. The extraction using headspace post-derivatization with bis(trimethylsilyl) trifluoroacetamide (BSTFA), containing 1 % trimethylchlorosilane (TMCS) vapor, following SPME was compared with extraction without derivatization. The SPME experimental procedures to extract bis-phenol A in water were optimized with a relatively polar polyacrylate (PA)-coated fiber, an extraction time of 50 min, and desorption at 300 °C for 2 min. Headspace derivatization following SPME was performed using 7 μL of BSTFA with 1 % TMCS at 65 °C for 30 s. The precision was 5.2 % without derivatization and 9.0 % headspace derivatization. The detection limit was determined to be at the nanogram per liter level. When SPME was used following headspace derivatization, the detection limit was one order of magnitude better than that achieved without derivatization. The results of this study reveal the adequacy of the SPME–GC–MS method for analyzing bisphenol A leached from plastic containers. The concentrations of bisphenol A leached from plastic containers into water ranged from 0.7 to 78.5 μg L−1.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 27, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off