Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress

Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves... Water deficit in plants causes a reduction in photosynthesis and high demands for osmolyte synthesis. To elucidate regulation of carbohydrate metabolic genes in wheat (Triticum aestivum) leaves during drought stress, we performed a systematic expression study using quantitative RT-PCR and cDNA microarray. These analyses revealed that expression levels of most genes encoding chloroplast enzymes involved in carbon fixation (Calvin cycle) were reduced in the leaves during prolonged drought stress. Transcript levels of highly expressed isoenzymes of hexokinase and fructokinase also decreased. Conversely, genes encoding cytoplasmic and vacuolar enzymes in the pathways leading to glucose, fructose and fructan production were up-regulated in the stressed leaves. Systematic expression analysis of an almost complete set of genes involved in conversion of triose phosphates to hexoses and hexose phosphorylation showed that isoenzymes of many enzymes were differentially regulated during drought stress. Correlation analysis indicated that the drought down-regulated Calvin cycle genes were coordinately regulated. This coordinated down-regulation extended to genes encoding major isoenzymes of chloroplast triose-phosphate/phosphate translocator, cytoplasmic fructose-1,6-bisphosphate aldolase and fructose bisphosphatase. Highly correlated expression was also observed between drought up-regulated genes involved in sucrose synthesis and hydrolysis or fructan synthesis. These data dissect coordination in regulation of key enzyme genes involved in carbon fixation and accumulation of hexoses and fructans and provide an insight into molecular mechanisms at the transcript level underlying changes in carbohydrate metabolism in wheat adaptation to drought stress. Plant Molecular Biology Springer Journals

Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress

Loading next page...
Springer Netherlands
Copyright © 2008 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial