Use of drinking water sludge in the production process of zeolites

Use of drinking water sludge in the production process of zeolites This study reports the synthesis of zeolites A, X, and P, cancrinite, and sodalite using sludge generated in a drinking water plant. Two experimental steps were carried out: (1) fusion and (2) hydrothermal treatment. Crystallization was achieved by means of a 23 experimental design with central point with the following factors: temperature, time, and solid/liquid ratio. The sludge presented Si and Al contents (SiO2/Al2O3 = 1.7) which allow the synthesis of zeolites with high cation exchange capacity. The content of organic matter was considerable (loss on ignition 26.1 %), but is eliminated in the fusion step at 550 °C. This process also permits the conversion of the initial aluminosilicates into zeolite precursors (sludge–NaOH mix of 1:0.785 g/g). Hydrothermal treatment then permits the crystallization of the aforementioned zeolites. These materials showed high cation exchange capacities as compared to other commercial and experimentally synthesized zeolites, and can be used in the removal of heavy metals such Cd2+, Pb2+, Cu2+, Fe2+, and ammonium present in water, providing an interesting new option in wastewater treatment and remediation of soils. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Use of drinking water sludge in the production process of zeolites

Loading next page...
 
/lp/springer_journal/use-of-drinking-water-sludge-in-the-production-process-of-zeolites-yTPTGFIHLk
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1138-8
Publisher site
See Article on Publisher Site

Abstract

This study reports the synthesis of zeolites A, X, and P, cancrinite, and sodalite using sludge generated in a drinking water plant. Two experimental steps were carried out: (1) fusion and (2) hydrothermal treatment. Crystallization was achieved by means of a 23 experimental design with central point with the following factors: temperature, time, and solid/liquid ratio. The sludge presented Si and Al contents (SiO2/Al2O3 = 1.7) which allow the synthesis of zeolites with high cation exchange capacity. The content of organic matter was considerable (loss on ignition 26.1 %), but is eliminated in the fusion step at 550 °C. This process also permits the conversion of the initial aluminosilicates into zeolite precursors (sludge–NaOH mix of 1:0.785 g/g). Hydrothermal treatment then permits the crystallization of the aforementioned zeolites. These materials showed high cation exchange capacities as compared to other commercial and experimentally synthesized zeolites, and can be used in the removal of heavy metals such Cd2+, Pb2+, Cu2+, Fe2+, and ammonium present in water, providing an interesting new option in wastewater treatment and remediation of soils.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 26, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off