Use of Collagen Gel as a Three-Dimensional In Vitro Model to Study Electropermeabilization and Gene Electrotransfer

Use of Collagen Gel as a Three-Dimensional In Vitro Model to Study Electropermeabilization and... Gene electrotransfer is a promising nonviral method that enables transfer of plasmid DNA into cells with electric pulses. Although many in vitro and in vivo studies have been performed, the question of the implied gene electrotransfer mechanisms is largely open. The main obstacle toward efficient gene electrotransfer in vivo is relatively poor mobility of DNA in tissues. Since cells are mechanically coupled to their extracellular environment and act differently compared to standard in vitro conditions, we developed a three-dimensional (3-D) in vitro model of CHO cells embedded in collagen gel as an ex vivo model of tissue to study electropermeabilization and different parameters of gene electrotransfer. For this purpose, we first used propidium iodide to detect electropermeabilization of CHO cells embedded in collagen gel. Then, we analyzed the influence of different concentrations of plasmid DNA and pulse duration on gene electrotransfer efficiency. Our results revealed that even if cells in collagen gel can be efficiently electropermeabilized, gene expression is significantly lower. Gene electrotransfer efficiency in our 3-D in vitro model had similar dependence on concentration of plasmid DNA and pulse duration comparable to in vivo studies, where longer (millisecond) pulses were shown to be more optimal compared to shorter (microsecond) pulses. The presented results demonstrate that our 3-D in vitro model resembles the in vivo situation more closely than conventional 2-D cell cultures and, thus, provides an environment closer to in vivo conditions to study mechanisms of gene electrotransfer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Use of Collagen Gel as a Three-Dimensional In Vitro Model to Study Electropermeabilization and Gene Electrotransfer

Loading next page...
 
/lp/springer_journal/use-of-collagen-gel-as-a-three-dimensional-in-vitro-model-to-study-NLONJE1Ti4
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-010-9280-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial