Use of an exon-trapping vector for the evaluation of splice-site mutations

Use of an exon-trapping vector for the evaluation of splice-site mutations Prediction of the effects of splice-site variations by sequence analysis is difficult. In this study we provide the means for a rapid evaluation of the potential for splice-site mutations to interfere with RNA processing. The system may be useful in reverse genetics or mapping studies when isolation and characterization of mRNA is arduous or not possible. In the assay we cloned wild-type and mutant sequences of murine splice-site mutations into an exon-trapping vector and characterized splicing of both recombinant transcripts in a transient cell culture system. Results from this artificial assay were compared with in vivo data from the respective mouse models. We found that the exon-trapping system allows one to confidently predict whether a splice-site variation is going to have a splicing effect in vivo, but the system does not always reflect in vivo splicing in detail. In summary, the exon-trapping system is a reliable and easy-to-use tool for a first evaluation of splice effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Use of an exon-trapping vector for the evaluation of splice-site mutations

Loading next page...
 
/lp/springer_journal/use-of-an-exon-trapping-vector-for-the-evaluation-of-splice-site-UVNA6budGh
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-007-9047-z
Publisher site
See Article on Publisher Site

Abstract

Prediction of the effects of splice-site variations by sequence analysis is difficult. In this study we provide the means for a rapid evaluation of the potential for splice-site mutations to interfere with RNA processing. The system may be useful in reverse genetics or mapping studies when isolation and characterization of mRNA is arduous or not possible. In the assay we cloned wild-type and mutant sequences of murine splice-site mutations into an exon-trapping vector and characterized splicing of both recombinant transcripts in a transient cell culture system. Results from this artificial assay were compared with in vivo data from the respective mouse models. We found that the exon-trapping system allows one to confidently predict whether a splice-site variation is going to have a splicing effect in vivo, but the system does not always reflect in vivo splicing in detail. In summary, the exon-trapping system is a reliable and easy-to-use tool for a first evaluation of splice effects.

Journal

Mammalian GenomeSpringer Journals

Published: Aug 9, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off