UpStream: storage-centric load management for streaming applications with update semantics

UpStream: storage-centric load management for streaming applications with update semantics This paper addresses the problem of minimizing the staleness of query results for streaming applications with update semantics under overload conditions. Staleness is a measure of how out-of-date the results are compared with the latest data arriving on the input. Real-time streaming applications are subject to overload due to unpredictably increasing data rates, while in many of them, we observe that data streams and queries in fact exhibit “update semantics” (i.e., the latest input data are all that really matters when producing a query result). Under such semantics, overload will cause staleness to build up. The key to avoid this is to exploit the update semantics of applications as early as possible in the processing pipeline. In this paper, we propose UpStream, a storage-centric framework for load management over streaming applications with update semantics. We first describe how we model streams and queries that possess the update semantics, providing definitions for correctness and staleness for the query results. Then, we show how staleness can be minimized based on intelligent update key scheduling techniques applied at the queue level, while preserving the correctness of the results, even for complex queries that involve sliding windows. UpStream is based on the simple idea of applying the updates in place, yet with great returns in terms of lowering staleness and memory consumption, as we also experimentally verify on the Borealis system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

UpStream: storage-centric load management for streaming applications with update semantics

Loading next page...
 
/lp/springer_journal/upstream-storage-centric-load-management-for-streaming-applications-SOpF1oZM75
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-011-0229-7
Publisher site
See Article on Publisher Site

Abstract

This paper addresses the problem of minimizing the staleness of query results for streaming applications with update semantics under overload conditions. Staleness is a measure of how out-of-date the results are compared with the latest data arriving on the input. Real-time streaming applications are subject to overload due to unpredictably increasing data rates, while in many of them, we observe that data streams and queries in fact exhibit “update semantics” (i.e., the latest input data are all that really matters when producing a query result). Under such semantics, overload will cause staleness to build up. The key to avoid this is to exploit the update semantics of applications as early as possible in the processing pipeline. In this paper, we propose UpStream, a storage-centric framework for load management over streaming applications with update semantics. We first describe how we model streams and queries that possess the update semantics, providing definitions for correctness and staleness for the query results. Then, we show how staleness can be minimized based on intelligent update key scheduling techniques applied at the queue level, while preserving the correctness of the results, even for complex queries that involve sliding windows. UpStream is based on the simple idea of applying the updates in place, yet with great returns in terms of lowering staleness and memory consumption, as we also experimentally verify on the Borealis system.

Journal

The VLDB JournalSpringer Journals

Published: Dec 1, 2011

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off