Upset-resilient RAM on STG DICE memory elements with the spaced transistors into two groups

Upset-resilient RAM on STG DICE memory elements with the spaced transistors into two groups The first experimental test of new DICE memory cells with the transistors spaced into two groups (Spaced Transistor Groups DICE—STG DICE), composed on a 65-nm CMOS static RAM proved their high upset resilience. The STG DICE memory cells have two communication wires between the two groups of transistors that made it possible to use the striping of groups of transistors to increase the distances between sensitive nodes of cells up to 2.32–3.09 μm at a small increase in cell area. The blocks of 65-nm 128 × 32-bit CMOS RAM cache and 32 × 64-bit multiport RAM based on the STG DICE cells are characterized by upset thresholds lying in the range of 3.55–4.05 nJ of the laser pulse energy with a pulse duration of 70 ps and diameter of the spot of 3.5 μm. These threshold values exceed the upset thresholds of 65-nm CMOS RAM on 6T memory cells by factors of 20 for RAM cache and 3.5 for multiport RAM. In STG DICE RAM multiple upsets are absent in contrast to RAM based on 6T-cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Upset-resilient RAM on STG DICE memory elements with the spaced transistors into two groups

Loading next page...
 
/lp/springer_journal/upset-resilient-ram-on-stg-dice-memory-elements-with-the-spaced-Icgot0WdaT
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739716050085
Publisher site
See Article on Publisher Site

Abstract

The first experimental test of new DICE memory cells with the transistors spaced into two groups (Spaced Transistor Groups DICE—STG DICE), composed on a 65-nm CMOS static RAM proved their high upset resilience. The STG DICE memory cells have two communication wires between the two groups of transistors that made it possible to use the striping of groups of transistors to increase the distances between sensitive nodes of cells up to 2.32–3.09 μm at a small increase in cell area. The blocks of 65-nm 128 × 32-bit CMOS RAM cache and 32 × 64-bit multiport RAM based on the STG DICE cells are characterized by upset thresholds lying in the range of 3.55–4.05 nJ of the laser pulse energy with a pulse duration of 70 ps and diameter of the spot of 3.5 μm. These threshold values exceed the upset thresholds of 65-nm CMOS RAM on 6T memory cells by factors of 20 for RAM cache and 3.5 for multiport RAM. In STG DICE RAM multiple upsets are absent in contrast to RAM based on 6T-cells.

Journal

Russian MicroelectronicsSpringer Journals

Published: Feb 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off