# Upper bounds on the smallest size of a complete arc in PG(2, q) under a certain probabilistic conjecture

Upper bounds on the smallest size of a complete arc in PG(2, q) under a certain probabilistic... In the projective plane PG(2, q), we consider an iterative construction of complete arcs which adds a new point in each step. It is proved that uncovered points are uniformly distributed over the plane. For more than half of steps of the iterative process, we prove an estimate for the number of newly covered points in every step. A natural (and well-founded) conjecture is made that the estimate holds for the other steps too. As a result, we obtain upper bounds on the smallest size t 2(2, q) of a complete arc in PG(2, q), in particular, $$\begin{array}{*{20}c} {t_2 (2,q) < \sqrt q \sqrt {3\ln q + \ln \ln q + \ln 3} + \sqrt {\frac{q} {{3\ln q}}} + 3,} \\ {t_2 (2,q) < 1.87\sqrt {q\ln q} .} \\ \end{array}$$ Nonstandard types of upper bounds on t 2(2, q) are considered, one of them being new. The effectiveness of the new bounds is illustrated by comparing them with the smallest known sizes of complete arcs obtained in recent works of the authors and in the present paper via computer search in a wide region of q. We note a connection of the considered problems with the so-called birthday problem (or birthday paradox). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

# Upper bounds on the smallest size of a complete arc in PG(2, q) under a certain probabilistic conjecture

Problems of Information Transmission, Volume 50 (4) – Jan 7, 2015
20 pages

/lp/springer_journal/upper-bounds-on-the-smallest-size-of-a-complete-arc-in-pg-2-q-under-a-ZOtfuievoe
Publisher
Springer Journals
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1134/S0032946014040036
Publisher site
See Article on Publisher Site

### Abstract

In the projective plane PG(2, q), we consider an iterative construction of complete arcs which adds a new point in each step. It is proved that uncovered points are uniformly distributed over the plane. For more than half of steps of the iterative process, we prove an estimate for the number of newly covered points in every step. A natural (and well-founded) conjecture is made that the estimate holds for the other steps too. As a result, we obtain upper bounds on the smallest size t 2(2, q) of a complete arc in PG(2, q), in particular, $$\begin{array}{*{20}c} {t_2 (2,q) < \sqrt q \sqrt {3\ln q + \ln \ln q + \ln 3} + \sqrt {\frac{q} {{3\ln q}}} + 3,} \\ {t_2 (2,q) < 1.87\sqrt {q\ln q} .} \\ \end{array}$$ Nonstandard types of upper bounds on t 2(2, q) are considered, one of them being new. The effectiveness of the new bounds is illustrated by comparing them with the smallest known sizes of complete arcs obtained in recent works of the authors and in the present paper via computer search in a wide region of q. We note a connection of the considered problems with the so-called birthday problem (or birthday paradox).

### Journal

Problems of Information TransmissionSpringer Journals

Published: Jan 7, 2015

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month ### Explore the DeepDyve Library ### Search Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly ### Organize Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place. ### Access Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals. ### Your journals are on DeepDyve Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more. All the latest content is available, no embargo periods. DeepDyve ### Freelancer DeepDyve ### Pro Price FREE$49/month
\$360/year

Save searches from
PubMed

Create folders to

Export folders, citations