Up-regulation of contractile endothelin receptors by airborne fine particulate matter in rat mesenteric arteries via activation of MAPK pathway

Up-regulation of contractile endothelin receptors by airborne fine particulate matter in rat... Fine particle matters (PM2.5) is a well-known risk factor for cardiovascular diseases. However, the underlying molecular mechanisms are largely unknown. Vascular hyper-reactivity plays an important roles in the pathogenesis of cardiovascular diseases. The present study was designed to investigate a hypothesis that PM2.5 up-regulated endothelin receptors in mesenteric artery and the potential underlying mechanisms. Rat mesenteric arteries were cultured with PM2.5. The artery contractile responses were recorded by a sensitive myograph. ETB and ETA receptor expressions of mRNA and protein were assessed by quantitative real-time PCR, Western blotting, and immunohistochemistry, respectively. Results showed that ETB receptor agonist, sarafotoxin 6c induced a negligible contraction in fresh artery segments, while ETA receptor agonist, ET-1 induced an obvious contraction. After organ culture, the contraction curve mediated by ETB and ETA receptors were shifted toward the left. PM2.5 1.0 μg/ml cultured for 16 h further enhanced ETB and ETA receptor-mediated contractile responses with a markedly increased maximal contraction. The organ culture enhanced ETB and ETA receptor mRNA and protein levels from fresh arteries, which were further increased by PM2.5. The U0126 (MEK/ERK1/2 inhibitor) and SB203580 (p38 inhibitor) significantly attenuated both organ cultured-induced and PM2.5-induced up-regulation of ETB receptor. U0126 also suppressed organ culture-increased and PM2.5-increased expressions of ETA receptor. SB203580 only suppressed PM2.5-induced enhanced expressions of ETA receptor In conclusion, airborne PM2.5 up-regulates ETB and ETA receptors of mesenteric artery via p38 MAPK and MEK/ERK1/2 MAPK pathways. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Up-regulation of contractile endothelin receptors by airborne fine particulate matter in rat mesenteric arteries via activation of MAPK pathway

Loading next page...
 
/lp/springer_journal/up-regulation-of-contractile-endothelin-receptors-by-airborne-fine-RkjOFddwxA
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1694-y
Publisher site
See Article on Publisher Site

Abstract

Fine particle matters (PM2.5) is a well-known risk factor for cardiovascular diseases. However, the underlying molecular mechanisms are largely unknown. Vascular hyper-reactivity plays an important roles in the pathogenesis of cardiovascular diseases. The present study was designed to investigate a hypothesis that PM2.5 up-regulated endothelin receptors in mesenteric artery and the potential underlying mechanisms. Rat mesenteric arteries were cultured with PM2.5. The artery contractile responses were recorded by a sensitive myograph. ETB and ETA receptor expressions of mRNA and protein were assessed by quantitative real-time PCR, Western blotting, and immunohistochemistry, respectively. Results showed that ETB receptor agonist, sarafotoxin 6c induced a negligible contraction in fresh artery segments, while ETA receptor agonist, ET-1 induced an obvious contraction. After organ culture, the contraction curve mediated by ETB and ETA receptors were shifted toward the left. PM2.5 1.0 μg/ml cultured for 16 h further enhanced ETB and ETA receptor-mediated contractile responses with a markedly increased maximal contraction. The organ culture enhanced ETB and ETA receptor mRNA and protein levels from fresh arteries, which were further increased by PM2.5. The U0126 (MEK/ERK1/2 inhibitor) and SB203580 (p38 inhibitor) significantly attenuated both organ cultured-induced and PM2.5-induced up-regulation of ETB receptor. U0126 also suppressed organ culture-increased and PM2.5-increased expressions of ETA receptor. SB203580 only suppressed PM2.5-induced enhanced expressions of ETA receptor In conclusion, airborne PM2.5 up-regulates ETB and ETA receptors of mesenteric artery via p38 MAPK and MEK/ERK1/2 MAPK pathways.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off