Up-Link Capacity Derivation for Ultra-Narrow-Band IoT Wireless Networks

Up-Link Capacity Derivation for Ultra-Narrow-Band IoT Wireless Networks Thanks to its low energy consumption and very long range (up to 50 km in free-space), ultra-narrow-band transmission (UNB) represents a promising alternative to classical technologies used in cellular networks to serve low-throughput wireless sensor networks and the Internet of Things (IoT). In UNB, nodes access to the medium by selecting their frequency in a random and continuous way. This randomness leads to new behavior in the interference which has not been theoretically analyzed, when considering the pathloss of nodes randomly deployed around the receiver. In this paper, in order to quantify the system performance, we derive and exploit two theoretical expressions of the outage probability in a UNB based IoT network, accounting for both interference due to the spectral randomness and path loss due to the propagation (with and without Rayleigh fading). This enables us to estimate the network capacity as a function of the path-loss exponent, by determining the maximum number of simultaneous supported nodes. We highlight that the bandwidth should be chosen based on the propagation channel properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Wireless Information Networks Springer Journals

Up-Link Capacity Derivation for Ultra-Narrow-Band IoT Wireless Networks

Loading next page...
 
/lp/springer_journal/up-link-capacity-derivation-for-ultra-narrow-band-iot-wireless-P4gSRxLiAw
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Electrical Engineering
ISSN
1068-9605
eISSN
1572-8129
D.O.I.
10.1007/s10776-017-0361-4
Publisher site
See Article on Publisher Site

Abstract

Thanks to its low energy consumption and very long range (up to 50 km in free-space), ultra-narrow-band transmission (UNB) represents a promising alternative to classical technologies used in cellular networks to serve low-throughput wireless sensor networks and the Internet of Things (IoT). In UNB, nodes access to the medium by selecting their frequency in a random and continuous way. This randomness leads to new behavior in the interference which has not been theoretically analyzed, when considering the pathloss of nodes randomly deployed around the receiver. In this paper, in order to quantify the system performance, we derive and exploit two theoretical expressions of the outage probability in a UNB based IoT network, accounting for both interference due to the spectral randomness and path loss due to the propagation (with and without Rayleigh fading). This enables us to estimate the network capacity as a function of the path-loss exponent, by determining the maximum number of simultaneous supported nodes. We highlight that the bandwidth should be chosen based on the propagation channel properties.

Journal

International Journal of Wireless Information NetworksSpringer Journals

Published: Jun 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off