Unusual isozyme patterns of glucose-6-phosphate isomerase in polydorids (Polychaeta: Spionidae) and the possible mechanisms of their formation

Unusual isozyme patterns of glucose-6-phosphate isomerase in polydorids (Polychaeta: Spionidae)... The isozyme patterns of glucose-6-phosphate isomerase (GPI) have been analyzed in ten species of polychaetes of the genera Polydora and Dipolydora (Polychaeta: Spionidae). The GPI patterns of these species have been found to have some specific characteristics that cannot be explained in terms of the generally accepted views on the nature of isozymes. The patterns are represented by two hybridizing isozymes with different expression specificities that exhibit coordinated allozymic variation in most individuals of each species studied. Involvement of alternative splicing in the expression of the GPI gene is considered to be the most probable mechanism of the formation of the unusual GPI isozyme patterns in polydorids. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Unusual isozyme patterns of glucose-6-phosphate isomerase in polydorids (Polychaeta: Spionidae) and the possible mechanisms of their formation

Loading next page...
 
/lp/springer_journal/unusual-isozyme-patterns-of-glucose-6-phosphate-isomerase-in-VlsXMopsOL
Publisher
Springer Journals
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795409080092
Publisher site
See Article on Publisher Site

Abstract

The isozyme patterns of glucose-6-phosphate isomerase (GPI) have been analyzed in ten species of polychaetes of the genera Polydora and Dipolydora (Polychaeta: Spionidae). The GPI patterns of these species have been found to have some specific characteristics that cannot be explained in terms of the generally accepted views on the nature of isozymes. The patterns are represented by two hybridizing isozymes with different expression specificities that exhibit coordinated allozymic variation in most individuals of each species studied. Involvement of alternative splicing in the expression of the GPI gene is considered to be the most probable mechanism of the formation of the unusual GPI isozyme patterns in polydorids.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Aug 25, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off