Unsupervised Video Hashing via Deep Neural Network

Unsupervised Video Hashing via Deep Neural Network Hashing is a common solution for content-based multimedia retrieval by encoding high-dimensional feature vectors into short binary codes. Previous works mainly focus on image hashing problem. However, these methods can not be directly used for video hashing, as videos contain not only spatial structure within each frame, but also temporal correlation between successive frames. Several researchers proposed to handle this by encoding the extracted key frames, but these frame-based methods are time-consuming in real applications. Other researchers proposed to characterize the video by averaging the spatial features of frames and then the existing hashing methods can be adopted. Unfortunately, the sort of “video” features does not take the correlation between frames into consideration and may lead to the loss of the temporal information. Therefore, in this paper, we propose a novel unsupervised video hashing framework via deep neural network, which performs video hashing by incorporating the temporal structure as well as the conventional spatial structure. Specially, the spatial features of videos are obtained by utilizing convolutional neural network, and the temporal features are established via long-short term memory. After that, the time series pooling strategy is employed to obtain the single feature vector for each video. The obtained spatio-temporal feature can be applied to many existing unsupervised hashing methods. Experimental results on two real datasets indicate that by employing the spatio-temporal features, our hashing method significantly improves the performance of existing methods which only deploy the spatial features, and meanwhile obtains higher mean average precision compared with the state-of-the-art video hashing methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Processing Letters Springer Journals

Unsupervised Video Hashing via Deep Neural Network

Loading next page...
 
/lp/springer_journal/unsupervised-video-hashing-via-deep-neural-network-bVGaISl4VA
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Complex Systems; Computational Intelligence
ISSN
1370-4621
eISSN
1573-773X
D.O.I.
10.1007/s11063-018-9812-x
Publisher site
See Article on Publisher Site

Abstract

Hashing is a common solution for content-based multimedia retrieval by encoding high-dimensional feature vectors into short binary codes. Previous works mainly focus on image hashing problem. However, these methods can not be directly used for video hashing, as videos contain not only spatial structure within each frame, but also temporal correlation between successive frames. Several researchers proposed to handle this by encoding the extracted key frames, but these frame-based methods are time-consuming in real applications. Other researchers proposed to characterize the video by averaging the spatial features of frames and then the existing hashing methods can be adopted. Unfortunately, the sort of “video” features does not take the correlation between frames into consideration and may lead to the loss of the temporal information. Therefore, in this paper, we propose a novel unsupervised video hashing framework via deep neural network, which performs video hashing by incorporating the temporal structure as well as the conventional spatial structure. Specially, the spatial features of videos are obtained by utilizing convolutional neural network, and the temporal features are established via long-short term memory. After that, the time series pooling strategy is employed to obtain the single feature vector for each video. The obtained spatio-temporal feature can be applied to many existing unsupervised hashing methods. Experimental results on two real datasets indicate that by employing the spatio-temporal features, our hashing method significantly improves the performance of existing methods which only deploy the spatial features, and meanwhile obtains higher mean average precision compared with the state-of-the-art video hashing methods.

Journal

Neural Processing LettersSpringer Journals

Published: Mar 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off