Unsupervised detection of density changes through principal component analysis for lung lesion classification

Unsupervised detection of density changes through principal component analysis for lung lesion... Lung cancer remains one of the most common cancers worldwide. Temporal evaluation is a useful tool for analyzing the malignant behavior of a lesion during treatment or that of indeterminate lesions which may be benign. Thereby, this work proposes a methodology for analysis, quantification and visualization of unsupervised changes in lung lesions, through principal component analysis. From change regions, we extracted texture features for lesion classification as benign or malignant. To reach this purpose, two databases with distinct behavior were used, one of which concerning malign under treatment and another indeterminate, but likely benign, lesions. The results have shown that the lesion’s density changes in a public database of malignant lesions under treatment were greater than the private database of benign lung nodules. From the texture analysis of the regions where the density changes occurred, we were able to discriminate lung lesions with an accuracy of 98.41 %, showing that these changes could point out the nature of the lesion. Other contribution was visualization of changes occurring in the lesions over time. Besides, we quantified these changes and analyzed the entire set through volumetry, the most commonly used technique to evaluate progression of lung lesions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Unsupervised detection of density changes through principal component analysis for lung lesion classification

Loading next page...
 
/lp/springer_journal/unsupervised-detection-of-density-changes-through-principal-component-gjgTQ0YuJA
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4414-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial