Unsupervised detection of density changes through principal component analysis for lung lesion classification

Unsupervised detection of density changes through principal component analysis for lung lesion... Lung cancer remains one of the most common cancers worldwide. Temporal evaluation is a useful tool for analyzing the malignant behavior of a lesion during treatment or that of indeterminate lesions which may be benign. Thereby, this work proposes a methodology for analysis, quantification and visualization of unsupervised changes in lung lesions, through principal component analysis. From change regions, we extracted texture features for lesion classification as benign or malignant. To reach this purpose, two databases with distinct behavior were used, one of which concerning malign under treatment and another indeterminate, but likely benign, lesions. The results have shown that the lesion’s density changes in a public database of malignant lesions under treatment were greater than the private database of benign lung nodules. From the texture analysis of the regions where the density changes occurred, we were able to discriminate lung lesions with an accuracy of 98.41 %, showing that these changes could point out the nature of the lesion. Other contribution was visualization of changes occurring in the lesions over time. Besides, we quantified these changes and analyzed the entire set through volumetry, the most commonly used technique to evaluate progression of lung lesions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Unsupervised detection of density changes through principal component analysis for lung lesion classification

Loading next page...
 
/lp/springer_journal/unsupervised-detection-of-density-changes-through-principal-component-gjgTQ0YuJA
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4414-6
Publisher site
See Article on Publisher Site

Abstract

Lung cancer remains one of the most common cancers worldwide. Temporal evaluation is a useful tool for analyzing the malignant behavior of a lesion during treatment or that of indeterminate lesions which may be benign. Thereby, this work proposes a methodology for analysis, quantification and visualization of unsupervised changes in lung lesions, through principal component analysis. From change regions, we extracted texture features for lesion classification as benign or malignant. To reach this purpose, two databases with distinct behavior were used, one of which concerning malign under treatment and another indeterminate, but likely benign, lesions. The results have shown that the lesion’s density changes in a public database of malignant lesions under treatment were greater than the private database of benign lung nodules. From the texture analysis of the regions where the density changes occurred, we were able to discriminate lung lesions with an accuracy of 98.41 %, showing that these changes could point out the nature of the lesion. Other contribution was visualization of changes occurring in the lesions over time. Besides, we quantified these changes and analyzed the entire set through volumetry, the most commonly used technique to evaluate progression of lung lesions.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Feb 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off