Unsteady flows in milli- and microsystems: analysis of wall shear rate fluctuations

Unsteady flows in milli- and microsystems: analysis of wall shear rate fluctuations The particular benefits of microfluidic systems, in terms of heat and mass transfer enhancement, require conducting local flow diagnostics, especially when unsteady properties of the microflow can play a critical role at the reaction interface, as currently observed in the fields of bioengineering and chemical engineering. The present paper focuses on unsteady confined flows within microsystems characterized by various geometries of crossing channels and exhibiting high surface-to-volume ratios. An experimental analysis of the signal measured at microsensors embedded to the wall of microsystems is discussed. In the objective of performing flow diagnostics, including regime identification and wall flow structure recognition, two methods for electrochemical signal processing are investigated and compared within an experimental network of crossing minichannels. One method is based on the use of a transfer function, while the other, the so-called Sobolik solution (Sobolik et al. in Coll Czech Chem Commun 52:913–928, 1987), consists of finding a direct solution to the mass balance equation. Sobolik’s method has been selected given its ability to provide a description, over a wide range of Reynolds numbers (317 < Re < 3,535), for all wall shear rate fluctuations, as well as for the associated mixing scales in the power spectra density (PSD). This technique is then applied to flow within micromixers composed of two crossing microchannels in order to study highly unsteady and inhomogeneous microflows. The hydraulic diameters of the studied channels are 500 and 833 μm, respectively. Two flow patterns are investigated herein: the crossing-flow type and the impinging flow (or so called co-flow) for a Reynolds number range between 173 and 3,356. The PSD of wall shear rate fluctuations reveals various flow characteristics depending on the microchannel aspect ratio. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Unsteady flows in milli- and microsystems: analysis of wall shear rate fluctuations

Loading next page...
 
/lp/springer_journal/unsteady-flows-in-milli-and-microsystems-analysis-of-wall-shear-rate-KVGXTNqLo4
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1079-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial