Unsteady characteristics of inlet vortices

Unsteady characteristics of inlet vortices An experimental study of the unsteady characteristics of inlet vortices has been conducted using a high-frame rate digital particle image velocimetry system. The results revealed the formation of a pair of counter-rotating inlet vortices for the no-wind configuration and one single inlet vortex when there was crosswind. In all measurement planes, from near the ground to the inlet, evidence of vortex meandering with quasi-periodicity was found. The vortex meander is dominant in the direction of the crosswind, and its amplitude increases with crosswind velocity. The proper orthogonal decomposition analysis of the instantaneous velocity field suggested that the most energetic mode was a helical displacement wave, corresponding to the first helical mode. Similarities with the meandering of the trailing vortices from wings were noted. The present results also suggest that the unsteady characteristics of the focus of separation formed on the ground might be responsible for the unsteady nature of the inlet vortex. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Unsteady characteristics of inlet vortices

Loading next page...
 
/lp/springer_journal/unsteady-characteristics-of-inlet-vortices-wtt0W6SKly
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1340-2
Publisher site
See Article on Publisher Site

Abstract

An experimental study of the unsteady characteristics of inlet vortices has been conducted using a high-frame rate digital particle image velocimetry system. The results revealed the formation of a pair of counter-rotating inlet vortices for the no-wind configuration and one single inlet vortex when there was crosswind. In all measurement planes, from near the ground to the inlet, evidence of vortex meandering with quasi-periodicity was found. The vortex meander is dominant in the direction of the crosswind, and its amplitude increases with crosswind velocity. The proper orthogonal decomposition analysis of the instantaneous velocity field suggested that the most energetic mode was a helical displacement wave, corresponding to the first helical mode. Similarities with the meandering of the trailing vortices from wings were noted. The present results also suggest that the unsteady characteristics of the focus of separation formed on the ground might be responsible for the unsteady nature of the inlet vortex.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 5, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off