Unsteadiness of the internal flow in an effervescent atomizer nozzle

Unsteadiness of the internal flow in an effervescent atomizer nozzle In order to better understand the mechanisms that effect spray unsteadiness of effervescent atomizers and therefore to efficiently eliminate it, the two-phase flow pattern within the nozzle has been studied by pressure measurement and flow visualization. We found that the speed of sound in the two-phase flow can be predicted by the model suggested by Nguyen et al. (Int J Multiphase Flow 7:311–320, 1981) using an averaged void fraction value. Dominant peak frequencies of pressure fluctuations both inside and outside the mixing chamber become synchronized in the slug flow regime. We show that the slug passage frequency is linearly proportional to the speed of sound and almost equal to the fundamental frequency of the mixing chamber. At a constant liquid flow rate and as the gas flow rate is increased, pressure fluctuations reach a maximum value with the appearance of a synchronized peak frequency. The amplitude of pressure fluctuation is then insensitive to further increases in the gas flow rate. For a constant gas flow rate, the pressure fluctuation increases with the increment of the liquid flow rate, reaching the maximum value at the moment of transition from slug flow to the bubbly flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Unsteadiness of the internal flow in an effervescent atomizer nozzle

Loading next page...
 
/lp/springer_journal/unsteadiness-of-the-internal-flow-in-an-effervescent-atomizer-nozzle-f8CUjwYss8
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1855-9
Publisher site
See Article on Publisher Site

Abstract

In order to better understand the mechanisms that effect spray unsteadiness of effervescent atomizers and therefore to efficiently eliminate it, the two-phase flow pattern within the nozzle has been studied by pressure measurement and flow visualization. We found that the speed of sound in the two-phase flow can be predicted by the model suggested by Nguyen et al. (Int J Multiphase Flow 7:311–320, 1981) using an averaged void fraction value. Dominant peak frequencies of pressure fluctuations both inside and outside the mixing chamber become synchronized in the slug flow regime. We show that the slug passage frequency is linearly proportional to the speed of sound and almost equal to the fundamental frequency of the mixing chamber. At a constant liquid flow rate and as the gas flow rate is increased, pressure fluctuations reach a maximum value with the appearance of a synchronized peak frequency. The amplitude of pressure fluctuation is then insensitive to further increases in the gas flow rate. For a constant gas flow rate, the pressure fluctuation increases with the increment of the liquid flow rate, reaching the maximum value at the moment of transition from slug flow to the bubbly flow.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 19, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off