Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Universal spherically symmetric solution of nonlinear dislocation theory for incompressible isotropic elastic medium

Universal spherically symmetric solution of nonlinear dislocation theory for incompressible... The equilibrium problem of a nonlinearly elastic medium with a given dislocation distribution is considered. The system of equations consists of the equilibrium equations for the stresses, the incompatibility equations for the distortion tensor, and the constitutive equations. Deformations are considered to be finite. For a special distribution of screw and edge dislocations, an exact spherically symmetric solution of these equations is found. This solution is universal in the class of isotropic incompressible elastic bodies. With the help of the obtained solution, the eigenstresses in a solid elastic sphere and in an infinite space with a spherical cavity are determined. The interaction of dislocations with an external hydrostatic load was also investigated. We have found the dislocation distribution that causes the spherically symmetric quasi-solid state of an elastic body, which is characterized by zero stresses and a nonuniform elementary volumes rotation field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archive of Applied Mechanics Springer Journals

Universal spherically symmetric solution of nonlinear dislocation theory for incompressible isotropic elastic medium

Loading next page...
 
/lp/springer_journal/universal-spherically-symmetric-solution-of-nonlinear-dislocation-nn0ziIYMHz

References (56)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Theoretical and Applied Mechanics; Classical Mechanics
ISSN
0939-1533
eISSN
1432-0681
DOI
10.1007/s00419-018-1403-9
Publisher site
See Article on Publisher Site

Abstract

The equilibrium problem of a nonlinearly elastic medium with a given dislocation distribution is considered. The system of equations consists of the equilibrium equations for the stresses, the incompatibility equations for the distortion tensor, and the constitutive equations. Deformations are considered to be finite. For a special distribution of screw and edge dislocations, an exact spherically symmetric solution of these equations is found. This solution is universal in the class of isotropic incompressible elastic bodies. With the help of the obtained solution, the eigenstresses in a solid elastic sphere and in an infinite space with a spherical cavity are determined. The interaction of dislocations with an external hydrostatic load was also investigated. We have found the dislocation distribution that causes the spherically symmetric quasi-solid state of an elastic body, which is characterized by zero stresses and a nonuniform elementary volumes rotation field.

Journal

Archive of Applied MechanicsSpringer Journals

Published: Jun 5, 2018

There are no references for this article.