Uniaxial Ratcheting Behavior of Dual-Phase Steel Sheet

Uniaxial Ratcheting Behavior of Dual-Phase Steel Sheet Uniaxial ratcheting behavior of an automotive-grade dual-phase steel sheet of 1.6 mm thickness has been investigated through engineering stress-controlled asymmetric cyclic loading experiments in the elastoplastic regime at ambient temperature (~ 28°C). Experiments have been performed keeping mean stress, stress amplitude or maximum stress constant. The effect of stress combinations on ratcheting deformation has been rationalized in terms of plastic strain amplitudes, both in loading and in unloading directions. It is found that for all stress combinations the steady-state ratcheting rate follows a perfect power relationship. Scanning electron fractography reveals that failure under asymmetric cyclic loading conditions occurs in a ductile manner through the formation of voids as it happens under tensile loading. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Engineering and Performance Springer Journals

Uniaxial Ratcheting Behavior of Dual-Phase Steel Sheet

Loading next page...
 
/lp/springer_journal/uniaxial-ratcheting-behavior-of-dual-phase-steel-sheet-LRf9SlAbTL
Publisher
Springer Journals
Copyright
Copyright © 2018 by ASM International
Subject
Materials Science; Characterization and Evaluation of Materials; Tribology, Corrosion and Coatings; Quality Control, Reliability, Safety and Risk; Engineering Design
ISSN
1059-9495
eISSN
1544-1024
D.O.I.
10.1007/s11665-018-3438-z
Publisher site
See Article on Publisher Site

Abstract

Uniaxial ratcheting behavior of an automotive-grade dual-phase steel sheet of 1.6 mm thickness has been investigated through engineering stress-controlled asymmetric cyclic loading experiments in the elastoplastic regime at ambient temperature (~ 28°C). Experiments have been performed keeping mean stress, stress amplitude or maximum stress constant. The effect of stress combinations on ratcheting deformation has been rationalized in terms of plastic strain amplitudes, both in loading and in unloading directions. It is found that for all stress combinations the steady-state ratcheting rate follows a perfect power relationship. Scanning electron fractography reveals that failure under asymmetric cyclic loading conditions occurs in a ductile manner through the formation of voids as it happens under tensile loading.

Journal

Journal of Materials Engineering and PerformanceSpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off