Understanding the kinetics and mechanism of thermal cheletropic elimination of N2 from (2,5-dihydro-1H-pyrrol-1-ium-1-ylidene) amide using RRKM and ELF theories

Understanding the kinetics and mechanism of thermal cheletropic elimination of N2 from... The cheletropic elimination process of N2 from (2,5-dihydro-1H-pyrrol-1-ium-1-ylidene) amide (C4H6N2) has been studied computationally using density functional theory, along with the M06-2X/aug-cc-pVTZ level of theory. The calculated energy profile has been supplemented with calculations of kinetic rate constants using transition state theory (TST) and statistical Rice–Ramsperger–Kassel–Marcus (RRKM) theory. This elimination process takes place spontaneously with an activation energy around 33 kJ/mol. Pressure dependence of the rate constants revealed that the TST approximation breaks down and fall-off expression is necessary for the kinetic modeling. At temperatures ranging from 240 to 360 K and atmospheric pressure, the unimolecular rate constant is evaluated from RRKM theory as $$k_{{(240 - 360\,{\text{K}})}}^{{1.0{\text{atm}}}} = 1.0249 \times 10^{12} \times {\text{e}}^{{ - \frac{{33.11\;{\text{kJ}}/{\text{mol}}}}{RT}}} \,{\text{s}}^{ - 1}$$ k ( 240 - 360 K ) 1.0 atm = 1.0249 × 10 12 × e - 33.11 kJ / mol R T s - 1 . Bonding changes along the reaction coordinate have been studied using bonding evolution theory. Electron localization function topological analysis reveals that the cheletropic elimination is characterized topologically by four successive structural stability domains (SSDs). Breaking of C–N bonds (Rx = 0.1992 amu1/2 Bohr) and the other selected points separating the SSDs along the reaction coordinate occur in the vicinity of the transition state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Understanding the kinetics and mechanism of thermal cheletropic elimination of N2 from (2,5-dihydro-1H-pyrrol-1-ium-1-ylidene) amide using RRKM and ELF theories

Loading next page...
Springer Netherlands
Copyright © 2016 by Springer Science+Business Media Dordrecht
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial