Understanding the high-point formation mechanism on large optical surface during ultra precision fly cutting process

Understanding the high-point formation mechanism on large optical surface during ultra precision... It was found that there always exists high points during cutting in and cutting out in the fly cutting of potassium dihydrogen phosphate (KDP) crystals. This results in poor surface flatness of KDP devices and degrades their optical performance. It is believed that the high-point formation are related to the cutting heat; however, the manner in which the cutting heat produces the high points and its control are still unclear. A thermomechanical model of the tool system in the fly cutting process is established to reveal the high-point formation mechanism on a large optical surface during the ultra-precision fly cutting process. The temperature field distribution of the tool system and axial displacement variation due to thermal deformation are solved and analyzed. The results indicate that the slow cutting heat accumulation caused by the discontinuous fly cutting process leads to moving of the cutting point in the axial direction, which is the main reason for the height difference during the process. Further analysis demonstrates that moving of the cutting point is primarily caused by the thermal deformation of the tool holder, not the tool or tool handle. Therefore, reducing the tool holder thermal deformation is the key to further improving the surface flatness of the workpiece. This study is of great significance for the improvement of the surface quality of large aperture optical devices in fly cutting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Understanding the high-point formation mechanism on large optical surface during ultra precision fly cutting process

Loading next page...
 
/lp/springer_journal/understanding-the-high-point-formation-mechanism-on-large-optical-AYbY7AFC69
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1383-x
Publisher site
See Article on Publisher Site

Abstract

It was found that there always exists high points during cutting in and cutting out in the fly cutting of potassium dihydrogen phosphate (KDP) crystals. This results in poor surface flatness of KDP devices and degrades their optical performance. It is believed that the high-point formation are related to the cutting heat; however, the manner in which the cutting heat produces the high points and its control are still unclear. A thermomechanical model of the tool system in the fly cutting process is established to reveal the high-point formation mechanism on a large optical surface during the ultra-precision fly cutting process. The temperature field distribution of the tool system and axial displacement variation due to thermal deformation are solved and analyzed. The results indicate that the slow cutting heat accumulation caused by the discontinuous fly cutting process leads to moving of the cutting point in the axial direction, which is the main reason for the height difference during the process. Further analysis demonstrates that moving of the cutting point is primarily caused by the thermal deformation of the tool holder, not the tool or tool handle. Therefore, reducing the tool holder thermal deformation is the key to further improving the surface flatness of the workpiece. This study is of great significance for the improvement of the surface quality of large aperture optical devices in fly cutting.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off