Understanding the errors in input prescription maps based on high spatial resolution remote sensing images

Understanding the errors in input prescription maps based on high spatial resolution remote... The aim of this study was to determine the positional accuracy of GeoEye-1 images and how it affects the delineation of the input prescription map (IPM) for site-specific strategies. Seven panchromatic and multi-spectral GeoEye-1 satellite images were taken over the LaVentilla village area (Andalusia, Spain), from April to October 2010, at an interval of approximately 3–4 weeks. Sixteen hard-edge ground control points (GCPs) were geo-referenced using a sub-decimetre DGPS. Each DGPS-GCP position was compared with the corresponding co-ordinates for each image to determine the position error (PE) and error direction angle ( $$ {\Upphi_{\text{ge}}}^{^\circ } $$ ). The PE and $$ {\Upphi_{\text{ge}}}^{^\circ } $$ for each GCP varied slightly for any given GeoEye-1 image and the overall PE among images estimated through the root mean square error (RMSE) varied considerably. RMSE ranged from approximately 2–9 m and from 3.5 to 9 m for the panchromatic and multi-spectral images studied, respectively, and the average was approximately 6.0 m for each of the series of images. Consequently, the geo-referencing of GeoEye-1 images is recommended to increase the positioning accuracy. Conventional geo-referencing using GCPs provided an average RMSE of 2 m for the panchromatic and 3.5 m for the multi-spectral images. The AUGEO System® geo-referencing of the 4-May GeoEye-1 image provided an RMSE of 0.75 m for the panchromatic and 2.70 ± 1.30 m for the multi-spectral images. The IPM delineated from remote-sensed images takes up the image geo-referencing error and, consequently, each micro-plot does not coincide with its corresponding ground-truth micro-plot. In this report, the percentage of non-overlapping area (%NOA) has been developed as a function of the PE/RMSE, α° (the angle between Φge and the operating direction, Φop), and the micro-plot size. The %NOA consistently increased as the RMSE and α° increased, and it decreased as the micro-plot width or length increased. The decision about micro-plot size should be based on the RMSE, α°, and the maximum admissible %NOA. In the case of the GeoEye-1 images studied with an average RMSE of 6 m, a micro-plot size of 6 × 30 m would have yielded an IPM inaccuracy (%NOA) of approximately 5 %, assuming an α° = 0°. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Understanding the errors in input prescription maps based on high spatial resolution remote sensing images

Loading next page...
Springer US
Copyright © 2012 by The Author(s)
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial