Understanding the errors in input prescription maps based on high spatial resolution remote sensing images

Understanding the errors in input prescription maps based on high spatial resolution remote... The aim of this study was to determine the positional accuracy of GeoEye-1 images and how it affects the delineation of the input prescription map (IPM) for site-specific strategies. Seven panchromatic and multi-spectral GeoEye-1 satellite images were taken over the LaVentilla village area (Andalusia, Spain), from April to October 2010, at an interval of approximately 3–4 weeks. Sixteen hard-edge ground control points (GCPs) were geo-referenced using a sub-decimetre DGPS. Each DGPS-GCP position was compared with the corresponding co-ordinates for each image to determine the position error (PE) and error direction angle ( $$ {\Upphi_{\text{ge}}}^{^\circ } $$ ). The PE and $$ {\Upphi_{\text{ge}}}^{^\circ } $$ for each GCP varied slightly for any given GeoEye-1 image and the overall PE among images estimated through the root mean square error (RMSE) varied considerably. RMSE ranged from approximately 2–9 m and from 3.5 to 9 m for the panchromatic and multi-spectral images studied, respectively, and the average was approximately 6.0 m for each of the series of images. Consequently, the geo-referencing of GeoEye-1 images is recommended to increase the positioning accuracy. Conventional geo-referencing using GCPs provided an average RMSE of 2 m for the panchromatic and 3.5 m for the multi-spectral images. The AUGEO System® geo-referencing of the 4-May GeoEye-1 image provided an RMSE of 0.75 m for the panchromatic and 2.70 ± 1.30 m for the multi-spectral images. The IPM delineated from remote-sensed images takes up the image geo-referencing error and, consequently, each micro-plot does not coincide with its corresponding ground-truth micro-plot. In this report, the percentage of non-overlapping area (%NOA) has been developed as a function of the PE/RMSE, α° (the angle between Φge and the operating direction, Φop), and the micro-plot size. The %NOA consistently increased as the RMSE and α° increased, and it decreased as the micro-plot width or length increased. The decision about micro-plot size should be based on the RMSE, α°, and the maximum admissible %NOA. In the case of the GeoEye-1 images studied with an average RMSE of 6 m, a micro-plot size of 6 × 30 m would have yielded an IPM inaccuracy (%NOA) of approximately 5 %, assuming an α° = 0°. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Understanding the errors in input prescription maps based on high spatial resolution remote sensing images

Loading next page...
 
/lp/springer_journal/understanding-the-errors-in-input-prescription-maps-based-on-high-GpnkY0Kf99
Publisher
Springer Journals
Copyright
Copyright © 2012 by The Author(s)
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-012-9270-9
Publisher site
See Article on Publisher Site

Abstract

The aim of this study was to determine the positional accuracy of GeoEye-1 images and how it affects the delineation of the input prescription map (IPM) for site-specific strategies. Seven panchromatic and multi-spectral GeoEye-1 satellite images were taken over the LaVentilla village area (Andalusia, Spain), from April to October 2010, at an interval of approximately 3–4 weeks. Sixteen hard-edge ground control points (GCPs) were geo-referenced using a sub-decimetre DGPS. Each DGPS-GCP position was compared with the corresponding co-ordinates for each image to determine the position error (PE) and error direction angle ( $$ {\Upphi_{\text{ge}}}^{^\circ } $$ ). The PE and $$ {\Upphi_{\text{ge}}}^{^\circ } $$ for each GCP varied slightly for any given GeoEye-1 image and the overall PE among images estimated through the root mean square error (RMSE) varied considerably. RMSE ranged from approximately 2–9 m and from 3.5 to 9 m for the panchromatic and multi-spectral images studied, respectively, and the average was approximately 6.0 m for each of the series of images. Consequently, the geo-referencing of GeoEye-1 images is recommended to increase the positioning accuracy. Conventional geo-referencing using GCPs provided an average RMSE of 2 m for the panchromatic and 3.5 m for the multi-spectral images. The AUGEO System® geo-referencing of the 4-May GeoEye-1 image provided an RMSE of 0.75 m for the panchromatic and 2.70 ± 1.30 m for the multi-spectral images. The IPM delineated from remote-sensed images takes up the image geo-referencing error and, consequently, each micro-plot does not coincide with its corresponding ground-truth micro-plot. In this report, the percentage of non-overlapping area (%NOA) has been developed as a function of the PE/RMSE, α° (the angle between Φge and the operating direction, Φop), and the micro-plot size. The %NOA consistently increased as the RMSE and α° increased, and it decreased as the micro-plot width or length increased. The decision about micro-plot size should be based on the RMSE, α°, and the maximum admissible %NOA. In the case of the GeoEye-1 images studied with an average RMSE of 6 m, a micro-plot size of 6 × 30 m would have yielded an IPM inaccuracy (%NOA) of approximately 5 %, assuming an α° = 0°.

Journal

Precision AgricultureSpringer Journals

Published: Jun 17, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off