Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR

Understanding amyloid fibril formation using protein fragments: structural investigations via... It is well established that amyloid proteins play a primary role in neurodegenerative diseases. Alzheimer’s, Parkinson’s, type II diabetes, and Creutzfeldt-Jakob’s diseases are part of a wider family encompassing more than 50 human pathologies related to aggregation of proteins. Although this field of research is thoroughly investigated, several aspects of fibrillization remain misunderstood, which in turn slows down, or even impedes, advances in treating and curing amyloidoses. To solve this problem, several research groups have chosen to focus on short fragments of amyloid proteins, sequences that have been found to be of great importance for the amyloid formation process. Studying short peptides allows bypassing the complexity of working with full-length proteins and may provide important information relative to critical segments of amyloid proteins. To this end, efficient biophysical tools are required. In this review, we focus on two essential types of spectroscopic techniques, i.e., vibrational spectroscopy and its derivatives (conventional Raman scattering, deep-UV resonance Raman (DUVRR), Raman optical activity (ROA), surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS), infrared (IR) absorption spectroscopy, vibrational circular dichroism (VCD)) and solid-state nuclear magnetic resonance (ssNMR). These techniques revealed powerful to provide a better atomic and molecular comprehension of the amyloidogenic process and fibril structure. This review aims at underlining the information that these techniques can provide and at highlighting their strengths and weaknesses when studying amyloid fragments. Meaningful examples from the literature are provided for each technique, and their complementarity is stressed for the kinetic and structural characterization of amyloid fibril formation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biophysical Reviews Springer Journals

Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR

Loading next page...
 
/lp/springer_journal/understanding-amyloid-fibril-formation-using-protein-fragments-xDRhgKw9Vr

References (137)

Publisher
Springer Journals
Copyright
Copyright © 2018 by International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Biochemistry, general; Biological and Medical Physics, Biophysics; Cell Biology; Membrane Biology; Biological Techniques; Nanotechnology
ISSN
1867-2450
eISSN
1867-2469
DOI
10.1007/s12551-018-0427-2
Publisher site
See Article on Publisher Site

Abstract

It is well established that amyloid proteins play a primary role in neurodegenerative diseases. Alzheimer’s, Parkinson’s, type II diabetes, and Creutzfeldt-Jakob’s diseases are part of a wider family encompassing more than 50 human pathologies related to aggregation of proteins. Although this field of research is thoroughly investigated, several aspects of fibrillization remain misunderstood, which in turn slows down, or even impedes, advances in treating and curing amyloidoses. To solve this problem, several research groups have chosen to focus on short fragments of amyloid proteins, sequences that have been found to be of great importance for the amyloid formation process. Studying short peptides allows bypassing the complexity of working with full-length proteins and may provide important information relative to critical segments of amyloid proteins. To this end, efficient biophysical tools are required. In this review, we focus on two essential types of spectroscopic techniques, i.e., vibrational spectroscopy and its derivatives (conventional Raman scattering, deep-UV resonance Raman (DUVRR), Raman optical activity (ROA), surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS), infrared (IR) absorption spectroscopy, vibrational circular dichroism (VCD)) and solid-state nuclear magnetic resonance (ssNMR). These techniques revealed powerful to provide a better atomic and molecular comprehension of the amyloidogenic process and fibril structure. This review aims at underlining the information that these techniques can provide and at highlighting their strengths and weaknesses when studying amyloid fragments. Meaningful examples from the literature are provided for each technique, and their complementarity is stressed for the kinetic and structural characterization of amyloid fibril formation.

Journal

Biophysical ReviewsSpringer Journals

Published: May 31, 2018

There are no references for this article.