Uncovering the transcriptional circuitry in skeletal muscle regeneration

Uncovering the transcriptional circuitry in skeletal muscle regeneration Skeletal muscle has a remarkable ability to regenerate after repeated and complete destruction of the tissue. The healing phases for an injured muscle undergo an activation program controlled by a dynamically inducible transcriptional regulatory network. Mapping a complex mammalian transcriptional network is confronted by significant challenges and requires the integration of multiple experimental data types. In this work we present a system approach to describe the transcriptional circuitry during skeletal muscle regeneration using time-course expression data and motif scanning information. Time-lagged correlation analysis was utilized to evaluate the transcription factor (TF) → target associations. Our analysis identified six TFs that potentially play a central role throughout the regeneration process. Four of them have previously been described to be important for muscle regeneration and differentiation. The remaining two TFs are identified as novel regulators that may have a role in the regeneration process. We hope that our work may provide useful clues to help accelerate the recovery process in injured skeletal muscle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Uncovering the transcriptional circuitry in skeletal muscle regeneration

Loading next page...
 
/lp/springer_journal/uncovering-the-transcriptional-circuitry-in-skeletal-muscle-cGfDyZEDI9
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Cell Biology; Anatomy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-011-9322-x
Publisher site
See Article on Publisher Site

Abstract

Skeletal muscle has a remarkable ability to regenerate after repeated and complete destruction of the tissue. The healing phases for an injured muscle undergo an activation program controlled by a dynamically inducible transcriptional regulatory network. Mapping a complex mammalian transcriptional network is confronted by significant challenges and requires the integration of multiple experimental data types. In this work we present a system approach to describe the transcriptional circuitry during skeletal muscle regeneration using time-course expression data and motif scanning information. Time-lagged correlation analysis was utilized to evaluate the transcription factor (TF) → target associations. Our analysis identified six TFs that potentially play a central role throughout the regeneration process. Four of them have previously been described to be important for muscle regeneration and differentiation. The remaining two TFs are identified as novel regulators that may have a role in the regeneration process. We hope that our work may provide useful clues to help accelerate the recovery process in injured skeletal muscle.

Journal

Mammalian GenomeSpringer Journals

Published: Apr 21, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off