Uncertainty under quantum measures and quantum memory

Uncertainty under quantum measures and quantum memory The uncertainty principle restricts potential information one gains about physical properties of the measured particle. However, if the particle is prepared in entanglement with a quantum memory, the corresponding entropic uncertainty relation will vary. Based on the knowledge of correlations between the measured particle and quantum memory, we have investigated the entropic uncertainty relations for two and multiple measurements and generalized the lower bounds on the sum of Shannon entropies without quantum side information to those that allow quantum memory. In particular, we have obtained generalization of Kaniewski–Tomamichel–Wehner’s bound for effective measures and majorization bounds for noneffective measures to allow quantum side information. Furthermore, we have derived several strong bounds for the entropic uncertainty relations in the presence of quantum memory for two and multiple measurements. Finally, potential applications of our results to entanglement witnesses are discussed via the entropic uncertainty relation in the absence of quantum memory. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Uncertainty under quantum measures and quantum memory

Loading next page...
 
/lp/springer_journal/uncertainty-under-quantum-measures-and-quantum-memory-AwVRxLECya
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1554-6
Publisher site
See Article on Publisher Site

Abstract

The uncertainty principle restricts potential information one gains about physical properties of the measured particle. However, if the particle is prepared in entanglement with a quantum memory, the corresponding entropic uncertainty relation will vary. Based on the knowledge of correlations between the measured particle and quantum memory, we have investigated the entropic uncertainty relations for two and multiple measurements and generalized the lower bounds on the sum of Shannon entropies without quantum side information to those that allow quantum memory. In particular, we have obtained generalization of Kaniewski–Tomamichel–Wehner’s bound for effective measures and majorization bounds for noneffective measures to allow quantum side information. Furthermore, we have derived several strong bounds for the entropic uncertainty relations in the presence of quantum memory for two and multiple measurements. Finally, potential applications of our results to entanglement witnesses are discussed via the entropic uncertainty relation in the absence of quantum memory.

Journal

Quantum Information ProcessingSpringer Journals

Published: Mar 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off