Uncertainty in Thermal Basin Modeling: An Interval Finite Element Approach

Uncertainty in Thermal Basin Modeling: An Interval Finite Element Approach Uncertainty assessment in basin modeling and reservoir characterization is traditionally treated by geostatistical methods which are normally based on stochastic probabilistic approaches. In this paper, we present an alternative approach which is based on interval arithmetic. Here, we discuss a fnite element formulation which uses interval numbers rather than real numbers to solve the transient heat conduction in sedimentary basins. For this purpose, a novel formulation was developed to deal with both the special interval arithmetic properties and the transient term in the differential Equation governing heat transfer. In this formulation, the “stiffness” matrix resulting from the discretization of the heat conduction equation is assembled with an element-by-element technique in which the elements are globally independent and the continuity is enforced by Lagrange multipliers. This formulation is an alternative to traditional Monte Carlo method, where it is necessary to run a simulation several times to estimate the uncertainty in the results.We have applied the newly developed techniques to a one-dimensional thermal basin simulation to assess their potential and limitations.We also compared the quality of our formulation with other solution methods for interval linear systems of equations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

Uncertainty in Thermal Basin Modeling: An Interval Finite Element Approach

Loading next page...
 
/lp/springer_journal/uncertainty-in-thermal-basin-modeling-an-interval-finite-element-2Ox2bMTYBw
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer Science + Business Media B.V.
Subject
Mathematics; Numeric Computing; Mathematical Modeling and Industrial Mathematics; Approximations and Expansions; Computational Mathematics and Numerical Analysis
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1007/s11155-006-9014-5
Publisher site
See Article on Publisher Site

Abstract

Uncertainty assessment in basin modeling and reservoir characterization is traditionally treated by geostatistical methods which are normally based on stochastic probabilistic approaches. In this paper, we present an alternative approach which is based on interval arithmetic. Here, we discuss a fnite element formulation which uses interval numbers rather than real numbers to solve the transient heat conduction in sedimentary basins. For this purpose, a novel formulation was developed to deal with both the special interval arithmetic properties and the transient term in the differential Equation governing heat transfer. In this formulation, the “stiffness” matrix resulting from the discretization of the heat conduction equation is assembled with an element-by-element technique in which the elements are globally independent and the continuity is enforced by Lagrange multipliers. This formulation is an alternative to traditional Monte Carlo method, where it is necessary to run a simulation several times to estimate the uncertainty in the results.We have applied the newly developed techniques to a one-dimensional thermal basin simulation to assess their potential and limitations.We also compared the quality of our formulation with other solution methods for interval linear systems of equations.

Journal

Reliable ComputingSpringer Journals

Published: Oct 25, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off