Umbilical Properties of Spacelike Co-dimension Two Submanifolds

Umbilical Properties of Spacelike Co-dimension Two Submanifolds For Riemannian submanifolds of a semi-Riemannian manifold, we introduce the concepts of total shear tensor and shear operators as the trace-free part of the corresponding second fundamental form and shape operators. The relationship between these quantities and the umbilical properties of the submanifold is shown. Several novel notions of umbilical submanifolds are then considered along with the classical concepts of totally umbilical and pseudo-umbilical submanifolds. Then we focus on the case of co-dimension 2, and we present necessary and sufficient conditions for the submanifold to be umbilical with respect to a normal direction. Moreover, we prove that the umbilical direction, if it exists, is unique —unless the submanifold is totally umbilical— and we give a formula to compute it explicitly. When the ambient manifold is Lorentzian we also provide a way of determining its causal character. We end the paper by illustrating our results on the Lorentzian geometry of the Kerr black hole. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Results in Mathematics Springer Journals

Umbilical Properties of Spacelike Co-dimension Two Submanifolds

Loading next page...
 
/lp/springer_journal/umbilical-properties-of-spacelike-co-dimension-two-submanifolds-0Vq7JpKV0X
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer International Publishing
Subject
Mathematics; Mathematics, general
ISSN
1422-6383
eISSN
1420-9012
D.O.I.
10.1007/s00025-016-0640-x
Publisher site
See Article on Publisher Site

Abstract

For Riemannian submanifolds of a semi-Riemannian manifold, we introduce the concepts of total shear tensor and shear operators as the trace-free part of the corresponding second fundamental form and shape operators. The relationship between these quantities and the umbilical properties of the submanifold is shown. Several novel notions of umbilical submanifolds are then considered along with the classical concepts of totally umbilical and pseudo-umbilical submanifolds. Then we focus on the case of co-dimension 2, and we present necessary and sufficient conditions for the submanifold to be umbilical with respect to a normal direction. Moreover, we prove that the umbilical direction, if it exists, is unique —unless the submanifold is totally umbilical— and we give a formula to compute it explicitly. When the ambient manifold is Lorentzian we also provide a way of determining its causal character. We end the paper by illustrating our results on the Lorentzian geometry of the Kerr black hole.

Journal

Results in MathematicsSpringer Journals

Published: Jan 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off