Access the full text.
Sign up today, get DeepDyve free for 14 days.
Sun Wei-we (2013)
Comparison of different fetal bovine serum in cultivation of human umbilical cord stroma-derived mesenchymal stem cellsJournal of Xinxiang Medical University
N. Mizushima, T. Yoshimori, B. Levine (2010)
Methods in Mammalian Autophagy ResearchCell, 140
N. Jha, S. Jha, Dhiraj Kumar, Noopur Kejriwal, Renubala Sharma, R. Ambasta, Pravir Kumar (2015)
Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer's Disease Biology: Characterization of Putative Cognates for Therapeutic Applications.Journal of Alzheimer's disease : JAD, 48 4
Lauren Whyte, Adeline Lau, K. Hemsley, J. Hopwood, T. Sargeant (2017)
Endo‐lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease?Journal of Neurochemistry, 140
D. Frenkel, K. Wilkinson, Lingzhi Zhao, S. Hickman, T. Means, L. Puckett, D. Farfara, Nathan Kingery, H. Weiner, J. Khoury (2013)
Scara1 deficiency impairs clearance of soluble Amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progressionNature communications, 4
Zhen Fan, D. Brooks, A. Okello, P. Edison (2017)
An early and late peak in microglial activation in Alzheimer’s disease trajectoryBrain, 140
L. Zuroff, David Daley, K. Black, M. Koronyo-Hamaoui (2017)
Clearance of cerebral Aβ in Alzheimer’s disease: reassessing the role of microglia and monocytesCellular and Molecular Life Sciences, 74
Dong Kim, Dahm Lee, E. Chang, Ji Kim, Jung Hwang, Ju-Yeon Kim, J. Kyung, Sung Kim, J. Oh, S. Shim, D. Na, W. Oh, J. Chang (2015)
GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model.Stem cells and development, 24 20
Fong-Lee Huang, Y. Shiao, Sheue-Jane Hou, Cheng‐Ning Yang, Yi-Jen Chen, Chao-Hsiung Lin, F. Shie, H. Tsay (2013)
Cysteine-rich domain of scavenger receptor AI modulates the efficacy of surface targeting and mediates oligomeric Aβ internalizationJournal of Biomedical Science, 20
Fiona Menzies, Angeleen Fleming, A. Caricasole, Carla Bento, S. Andrews, A. Ashkenazi, J. Füllgrabe, Anne Jackson, Maria Sanchez, C. Karabiyik, F. Licitra, A. Ramírez, Mariana Pavel, C. Puri, Maurizio Renna, T. Ricketts, Lars Schlotawa, M. Vicinanza, Hyeran Won, Ye Zhu, J. Skidmore, D. Rubinsztein (2017)
Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic OpportunitiesNeuron, 93
J. Miners, N. Barua, P. Kehoe, S. Gill, S. Love (2011)
A&bgr;-Degrading Enzymes: Potential for Treatment of Alzheimer DiseaseJournal of Neuropathology and Experimental Neurology, 70
Saori Yoshii, N. Mizushima (2017)
Monitoring and Measuring AutophagyInternational Journal of Molecular Sciences, 18
Santiago Solé-Domènech, Dana Cruz, E. Capetillo-Zarate, F. Maxfield (2016)
The endocytic pathway in microglia during health, aging and Alzheimer’s diseaseAgeing Research Reviews, 32
L. Janssen, M. Dubbelaar, I. Holtman, Jelkje Boer-Bergsma, B. Eggen, H. Boddeke, P. Deyn, D. Dam (2017)
Aging, microglia and cytoskeletal regulation are key factors in the pathological evolution of the APP23 mouse model for Alzheimer's disease.Biochimica et biophysica acta. Molecular basis of disease, 1863 2
Xinxin Wang, Shanshan Ma, Bo Yang, Tuanjie Huang, Nan Meng, Ling Xu, Qu Xing, Yanting Zhang, Kun Zhang, Qinghua Li, Tao Zhang, Junwei Wu, Greta Yang, F. Guan, Jian Wang (2018)
Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer’s diseaseBehavioural Brain Research, 339
Peidu Jiang, N. Mizushima (2015)
LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells.Methods, 75
Sung Baik, Seokjo Kang, S. Son, I. Mook-Jung (2016)
Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer's disease mouse modelGlia, 64
C. Lane, J. Hardy, J. Schott (2018)
Alzheimer's diseaseEuropean Journal of Neurology, 25
M. Cho, Kwangmin Cho, Hoe-Jin Kang, Eun-Young Jeon, H. Kim, Hyung-Joon Kwon, Hong-Mi Kim, Dong‐Hou Kim, Seung-Yong Yoon (2014)
Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasomeAutophagy, 10
Elizabeth Spangenberg, Rafael Lee, A. Najafi, Rachel Rice, M. Elmore, M. Blurton-Jones, B. West, K. Green (2016)
Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology.Brain : a journal of neurology, 139 Pt 4
Tan Li, Mingxu Xia, Yuanyuan Gao, Yanting Chen, Yun Xu (2015)
Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapyExpert Opinion on Biological Therapy, 15
H. Wood (2017)
Alzheimer disease: Soluble TREM2 in CSF sheds light on microglial activation in ADNature Reviews Neurology, 13
Ji Lee, I. Oh, H. Lim (2016)
Stem Cell Therapy: A Prospective Treatment for Alzheimer's DiseasePsychiatry Investigation, 13
Daniel Colacurcio, Anna Pensalfini, Ying Jiang, R. Nixon (2018)
Dysfunction of autophagy and endosomal‐lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's DiseaseFree Radical Biology and Medicine, 114
Y Yu, RD Ye (2015)
Microglial Abeta receptors in Alzheimer's diseaseCell Mol Neurobiol, 35
J. Hunsberger, Mahendra Rao, J. Kurtzberg, Jeff Bulte, A. Atala, F. LaFerla, H. Greely, A. Sawa, S. Gandy, Lon Schneider, P. Doraiswamy (2016)
Accelerating stem cell trials for Alzheimer's diseaseThe Lancet Neurology, 15
Kushal Kumar, Ashwani Kumar, R. Keegan, R. Deshmukh (2018)
Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease.Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 98
F. Ciregia, A. Urbani, G. Palmisano (2017)
Extracellular Vesicles in Brain Tumors and Neurodegenerative DiseasesFrontiers in Molecular Neuroscience, 10
J. Shin, H. Park, Ha Kim, S. Oh, J. Bae, Heejin Ha, P. Lee (2014)
Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease modelsAutophagy, 10
Samuel Frere, I. Slutsky (2018)
Alzheimer’s Disease: From Firing Instability to Homeostasis Network CollapseNeuron, 97
Dorothée Cantinieaux, Renaud Quertainmont, S. Blacher, Loïc Rossi, T. Wanet, A. Noël, G. Brook, J. Schoenen, R. Franzen (2013)
Conditioned Medium from Bone Marrow-Derived Mesenchymal Stem Cells Improves Recovery after Spinal Cord Injury in Rats: An Original Strategy to Avoid Cell TransplantationPLoS ONE, 8
Elizabeth Spangenberg, K. Green (2017)
Inflammation in Alzheimer’s disease: Lessons learned from microglia-depletion modelsBrain, Behavior, and Immunity, 61
C. Quek, A. Hill (2017)
The role of extracellular vesicles in neurodegenerative diseases.Biochemical and biophysical research communications, 483 4
K. Mawuenyega, Wendy Sigurdson, Vitaliy Ovod, L. Munsell, Tom Kasten, J. Morris, K. Yarasheski, R. Bateman (2010)
Decreased Clearance of CNS β-Amyloid in Alzheimer’s DiseaseScience, 330
J. Ryan, F. Barry, J. Murphy, B. Mahon (2005)
Mesenchymal stem cells avoid allogeneic rejectionJournal of Inflammation (London, England), 2
D. Giulian, T. Baker (1986)
Characterization of ameboid microglia isolated from developing mammalian brain, 6
R. Nixon, J. Wegiel, Asok Kumar, W. Yu, C. Peterhoff, A. Cataldo, A. Cuervo (2005)
Extensive Involvement of Autophagy in Alzheimer Disease: An Immuno-Electron Microscopy StudyJNEN: Journal of Neuropathology & Experimental Neurology, 64
K. Larsen, T. Lamark, Aud Øvervatn, Ingvill Harneshaug, T. Johansen, G. Bjørkøy (2010)
A reporter cell system to monitor autophagy based on p62/SQSTM1Autophagy, 6
A. Waisman, F. Ginhoux, M. Greter, Julia Bruttger (2015)
Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems.Trends in immunology, 36 10
S. Jang, Jung Yu, S. Kim, G. Kim, Da Park, Do Lee, S. Joo (2015)
An Aβ42 uptake and degradation via Rg3 requires an activation of caveolin, clathrin and Aβ-degrading enzymes in microglia.European journal of pharmacology, 758
Shan-shan Wang, J. Jia, Zhenfu Wang (2018)
Mesenchymal Stem Cell-Derived Extracellular Vesicles Suppresses iNOS Expression and Ameliorates Neural Impairment in Alzheimer's Disease Mice.Journal of Alzheimer's disease : JAD, 61 3
Michela Guglielmotto, Debora Monteleone, A. Piras, V. Valsecchi, M. Tropiano, Stefania Ariano, M. Fornaro, A. Vercelli, J. Puyal, O. Arancio, M. Tabaton, E. Tamagno (2014)
Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosisAutophagy, 10
Joonas Khabbal, E. Kerkelä, B. Mitkari, M. Raki, J. Nystedt, Ville Mikkonen, Kim Bergström, S. Laitinen, M. Korhonen, J. Jolkkonen (2015)
Differential Clearance of Rat and Human Bone Marrow-Derived Mesenchymal Stem Cells from the Brain after Intra-arterial Infusion in RatsCell Transplantation, 24
Keren Hamisha, Matanel Tfilin, J. Yanai, Gadi Turgeman (2015)
Mesenchymal Stem Cells Can Prevent Alterations in Behavior and Neurogenesis Induced by Aß25–35 AdministrationJournal of Molecular Neuroscience, 55
C. Mallard, M. Tremblay, Z. Vexler (2019)
Microglia and Neonatal Brain InjuryNeuroscience, 405
Jaeyong Kim, Kim Dh, Jang‐Seong Kim, Dong-Hoon Lee, Jeon Hb, Kwon Sj, Seong Kim, Yoo Yj, E. Lee, Choi Sj, S. Seo, Jung-Il Lee, D. Na, Yang Ys, W. Oh, Chang Jw (2011)
Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-β plaquesCell Death and Differentiation, 19
Mariana Godoy, L. Saraiva, L. Carvalho, A. Vasconcelos-dos-Santos, H. Beiral, A. Ramos, Livian Silva, Renata Leal, V. Monteiro, C. Braga, Carlla Araujo-Silva, Leandro Sinis, Victor Bodart-Santos, T. Kasai-Brunswick, C. Alcantara, Ana Lima, Narcisa Silva, A. Galina, A. Vieyra, F. Felice, R. Mendez-Otero, Sérgio Ferreira (2017)
Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomersThe Journal of Biological Chemistry, 293
B. Strooper, E. Karran (2016)
The Cellular Phase of Alzheimer’s DiseaseCell, 164
P. Dowling, M. Clynes (2011)
Conditioned media from cell lines: A complementary model to clinical specimens for the discovery of disease‐specific biomarkersPROTEOMICS, 11
Yang Yu, R. Ye (2014)
Microglial Aβ Receptors in Alzheimer’s DiseaseCellular and Molecular Neurobiology, 35
I. Orhon, F. Reggiori (2017)
Assays to Monitor Autophagy Progression in Cell CulturesCells, 6
Yadong Huang, L. Mucke (2012)
Alzheimer Mechanisms and Therapeutic StrategiesCell, 148
Yuanbo Cui, Shanshan Ma, Chunyan Zhang, W. Cao, Min Liu, Dongpeng Li, P. Lv, Qu Xing, R. Qu, Ning Yao, Bo Yang, F. Guan (2017)
Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesisBehavioural Brain Research, 320
Ainhoa Plaza-Zabala, Virginia Sierra-Torre, A. Sierra (2017)
Autophagy and Microglia: Novel Partners in Neurodegeneration and AgingInternational Journal of Molecular Sciences, 18
Darío Tejera, M. Heneka (2016)
Microglia in Alzheimer's disease: the good, the bad and the ugly.Current Alzheimer research, 13 4
Qian Li, Yi Liu, Miao Sun (2016)
Autophagy and Alzheimer’s DiseaseCellular and Molecular Neurobiology, 37
(2016)
World Alzheimer Report
P. Wes, Faten Sayed, F. Bard, L. Gan (2016)
Targeting microglia for the treatment of Alzheimer's DiseaseGlia, 64
B. Boland, Asok Kumar, Sooyeon Lee, F. Platt, J. Wegiel, W. Yu, R. Nixon (2008)
Autophagy Induction and Autophagosome Clearance in Neurons: Relationship to Autophagic Pathology in Alzheimer's DiseaseThe Journal of Neuroscience, 28
N. Dagher, A. Najafi, K. Kayala, M. Elmore, Terra White, R. Medeiros, B. West, K. Green (2015)
Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD miceJournal of Neuroinflammation, 12
S. Wray, Nick Fox (2016)
Stem cell therapy for Alzheimer's disease: hope or hype?The Lancet Neurology, 15
S. Hickman, Elizabeth Allison, J. Khoury (2008)
Microglial Dysfunction and Defective β-Amyloid Clearance Pathways in Aging Alzheimer's Disease MiceThe Journal of Neuroscience, 28
H. Lee, Jong Lee, H. Lee, Ji-Woong Shin, J. Carter, T. Sakamoto, H. Jin, J. Bae (2010)
The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's diseaseNeuroscience Letters, 481
Dun-Sheng Yang, Philip Stavrides, P. Mohan, Susmita Kaushik, Asok Kumar, M. Ohno, S. Schmidt, D. Wesson, U. Bandyopadhyay, Ying Jiang, M. Pawlik, C. Peterhoff, A. Yang, D. Wilson, P. George-Hyslop, D. Westaway, P. Mathews, E. Levy, A. Cuervo, R. Nixon (2011)
Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits.Brain : a journal of neurology, 134 Pt 1
J. Ehrhart, D. Darlington, N. Kuzmin‐Nichols, C. Sanberg, D. Sawmiller, P. Sanberg, Jun Tan (2016)
Biodistribution of Infused Human Umbilical Cord Blood Cells in Alzheimer's Disease-Like Murine ModelCell Transplantation, 25
Mesenchymal stem cell (MSC) therapy is a promising prospect for the treatment of Alzheimer’s disease (AD); however, the underlying mechanisms by which MSCs mediate positive effects are still unclear. We speculated that MSCs mediate microglial autophagy and enhance the clearance of Aβ. To test this hypothesis, we cultured BV2 microglial cells with umbilical cord mesenchymal stem cells conditioned medium (ucMSCs-CM) in the presence or absence of Aβ25–35 oligomers. We investigated BV2 cell proliferation, cell death, and Aβ25–35 phagocytosis as well as protein expression levels of LC3, Beclin-1, p62, insulin-degrading enzyme (IDE), and neprilysin (Nep) with western blotting. The results showed that ucMSCs-CM inhibited the proliferation and decreased cell death of BV2 cells induced by Aβ25–35. ucMSCs-CM also promoted the phagocytosis of Aβ25–35 by BV2 cells and changed the expression of autophagy-related proteins LC3, Beclin-1, and p62. Treatment also upregulated the expression of Aβ-degrading enzymes IDE and Nep. Furthermore, the culture medium in BV2 cells with Aβ25–35 and ucMSCs-CM prevented neuronal cell SH-SY5Y from cell death compared to control medium without ucMSCs-CM. Altogether, these data suggested that ucMSCs-CM protect microglial and neuronal cells from Aβ25–35-induced cell death and promote Aβ phagocytosis by modulating autophagy and enhancing the expression of Aβ-degrading enzymes in microglia.
Journal of Molecular Neuroscience – Springer Journals
Published: May 29, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.