Ultraviolet Rays Promote Development of Photosystem II Photochemical Activity and Accumulation of Phenolic Compounds in the Tea Callus Culture (Camellia sinensis)

Ultraviolet Rays Promote Development of Photosystem II Photochemical Activity and Accumulation of... Effect of UV-B rays (280–320 nm) on photosynthetic electron transport and production of phenolic compounds in tea (Camellia sinensis L.) callus culture grown in white light was investigated. When white light was supplemented with UV radiation, the culture growth was retarded and morphological characteristics were modified. These conditions promoted the formation of chlorophyll-bearing cells and altered the ability of cultured cells to accumulate phenolic compounds, including flavans specific to Camellia sinensis. By the end of the culturing cycle (on the 45th day), the total content of phenolic compounds in the culture grown under supplementary UV irradiation was almost 1.5 times higher than in the control culture. The UV rays greatly stimulated photosystem II (PSII) activity in phototrophic cells of the callus culture, which was indicated by a large increase in the ratio of variable chlorophyll fluorescence to maximal fluorescence. This ratio was as low as 0.19 in cells cultured in white light and increased to 0.53 in the cell culture grown under white and UV light. The kinetics of dark relaxation of chlorophyll variable fluorescence, related to reoxidation of PSII primary acceptor, contained either two or three components, depending on the absence or presence of UV radiation, respectively. An artificial electron acceptor of PSI, methyl viologen modified the kinetics of dark decay of chlorophyll variable fluorescence in a characteristic manner, implying that photosynthetic electron transport was mediated by PSI and PSII in both treatments (culturing in white light with and without UV-B). It is concluded that stimulatory effect of UV rays on the parameters examined in phototrophic regions of Camellia tissue culture is determined by photoexcitation of a regulatory pigment that absorbs quanta in blue and long-wave UV spectral regions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Ultraviolet Rays Promote Development of Photosystem II Photochemical Activity and Accumulation of Phenolic Compounds in the Tea Callus Culture (Camellia sinensis)

Loading next page...
 
/lp/springer_journal/ultraviolet-rays-promote-development-of-photosystem-ii-photochemical-uKjadO6gog
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0109-3
Publisher site
See Article on Publisher Site

Abstract

Effect of UV-B rays (280–320 nm) on photosynthetic electron transport and production of phenolic compounds in tea (Camellia sinensis L.) callus culture grown in white light was investigated. When white light was supplemented with UV radiation, the culture growth was retarded and morphological characteristics were modified. These conditions promoted the formation of chlorophyll-bearing cells and altered the ability of cultured cells to accumulate phenolic compounds, including flavans specific to Camellia sinensis. By the end of the culturing cycle (on the 45th day), the total content of phenolic compounds in the culture grown under supplementary UV irradiation was almost 1.5 times higher than in the control culture. The UV rays greatly stimulated photosystem II (PSII) activity in phototrophic cells of the callus culture, which was indicated by a large increase in the ratio of variable chlorophyll fluorescence to maximal fluorescence. This ratio was as low as 0.19 in cells cultured in white light and increased to 0.53 in the cell culture grown under white and UV light. The kinetics of dark relaxation of chlorophyll variable fluorescence, related to reoxidation of PSII primary acceptor, contained either two or three components, depending on the absence or presence of UV radiation, respectively. An artificial electron acceptor of PSI, methyl viologen modified the kinetics of dark decay of chlorophyll variable fluorescence in a characteristic manner, implying that photosynthetic electron transport was mediated by PSI and PSII in both treatments (culturing in white light with and without UV-B). It is concluded that stimulatory effect of UV rays on the parameters examined in phototrophic regions of Camellia tissue culture is determined by photoexcitation of a regulatory pigment that absorbs quanta in blue and long-wave UV spectral regions.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Nov 15, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off