Ultraviolet photofunctionalization of nanostructured titanium surfaces enhances thrombogenicity and platelet response

Ultraviolet photofunctionalization of nanostructured titanium surfaces enhances thrombogenicity... The purpose of this study was to evaluate blood and platelet response to nanostructured TiO2 coatings and to investigate the effect of Ultraviolet (UV) light treatment on blood clotting ability, platelet activation and protein adhesion. Ti-6Al-4V titanium alloy plates (n = 138) were divided into three groups; a sol–gel derived MetAliveTM coating (MA); hydrothermal coating (HT); and a non-coated group (NC). Sixty nine titanium substrates were further treated with UV light for 1 h. The thrombogenicity of the titanium substrates was assessed using fresh human blood with a whole blood kinetic clotting time method. The platelet adhesion test was conducted to evaluate the morphology and adhesion behavior of the platelets on the titanium substrates. Human diluted plasma and bovine fibronectin were used to evaluate protein adsorption. Total clotting time for the UV treated HT, MA and NC titanium substrates was almost 40 min compared to 60 min for non-UV substrates, the total clotting time for the UV treated groups were significantly lower than that of the non UV NC group (p < 0.05). UV light treatment had significantly enhanced coagulation rates. The HT and MA substrates presented more platelet aggregation, spreading and pseudopod formation in comparison with the NC substrates. UV treatment did not affect the platelet activation and protein adsorption. This in vitro study concluded that nanostructured titanium dioxide implant surfaces obtained by sol–gel and hydrothermal coating methods increased coagulation rates and enhanced platelet response when compared with non-coated surfaces. UV light treatment clearly improved thrombogenicity of all examined Ti-6Al-4V surfaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Medicine Springer Journals

Ultraviolet photofunctionalization of nanostructured titanium surfaces enhances thrombogenicity and platelet response

Loading next page...
 
/lp/springer_journal/ultraviolet-photofunctionalization-of-nanostructured-titanium-surfaces-D08FB9uJy0
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Biomaterials; Biomedical Engineering; Regenerative Medicine/Tissue Engineering; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials; Surfaces and Interfaces, Thin Films
ISSN
0957-4530
eISSN
1573-4838
D.O.I.
10.1007/s10856-018-6067-z
Publisher site
See Article on Publisher Site

Abstract

The purpose of this study was to evaluate blood and platelet response to nanostructured TiO2 coatings and to investigate the effect of Ultraviolet (UV) light treatment on blood clotting ability, platelet activation and protein adhesion. Ti-6Al-4V titanium alloy plates (n = 138) were divided into three groups; a sol–gel derived MetAliveTM coating (MA); hydrothermal coating (HT); and a non-coated group (NC). Sixty nine titanium substrates were further treated with UV light for 1 h. The thrombogenicity of the titanium substrates was assessed using fresh human blood with a whole blood kinetic clotting time method. The platelet adhesion test was conducted to evaluate the morphology and adhesion behavior of the platelets on the titanium substrates. Human diluted plasma and bovine fibronectin were used to evaluate protein adsorption. Total clotting time for the UV treated HT, MA and NC titanium substrates was almost 40 min compared to 60 min for non-UV substrates, the total clotting time for the UV treated groups were significantly lower than that of the non UV NC group (p < 0.05). UV light treatment had significantly enhanced coagulation rates. The HT and MA substrates presented more platelet aggregation, spreading and pseudopod formation in comparison with the NC substrates. UV treatment did not affect the platelet activation and protein adsorption. This in vitro study concluded that nanostructured titanium dioxide implant surfaces obtained by sol–gel and hydrothermal coating methods increased coagulation rates and enhanced platelet response when compared with non-coated surfaces. UV light treatment clearly improved thrombogenicity of all examined Ti-6Al-4V surfaces.

Journal

Journal of Materials Science: Materials in MedicineSpringer Journals

Published: May 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off