Ultrasonic assistance in drilling: FEM analysis and experimental approaches

Ultrasonic assistance in drilling: FEM analysis and experimental approaches Conventional drilling (CD) which is known by two constant rotary and linear motions causes some problems in drilling of materials such as high thrust force, poor surface quality, and rapid tool wear. To get rid of these problems or at least minimize them, a promising technology has been employed in the recent years, where vibrations usually with low amplitude and high frequency are applied to the direction of feed motion results in a time-dependent velocity between drill tip and workpiece. This paper focuses on the design of a vibratory tool following by experimental and numerical approaches to study the influence of longitudinal ultrasonic vibrations on drilling of aluminum alloy 7075. Experimental part is a comprehensive exercise to design, fabricate, and test a system equipped with different instruments to work in desired conditions. Experimental results are supported by a finite element method to better comprehend what is happening in cutting process when ultrasonic vibrations are added. The achieved results prove that using ultrasonic-assisted drilling (UAD), the machining ability of drilled aluminum workpiece can enhance significantly. Improvement of up to 40% for drill circularity and a reduction of up to 37% in thrust force were achieved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Ultrasonic assistance in drilling: FEM analysis and experimental approaches

Loading next page...
 
/lp/springer_journal/ultrasonic-assistance-in-drilling-fem-analysis-and-experimental-ojplovyfWg
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0285-2
Publisher site
See Article on Publisher Site

Abstract

Conventional drilling (CD) which is known by two constant rotary and linear motions causes some problems in drilling of materials such as high thrust force, poor surface quality, and rapid tool wear. To get rid of these problems or at least minimize them, a promising technology has been employed in the recent years, where vibrations usually with low amplitude and high frequency are applied to the direction of feed motion results in a time-dependent velocity between drill tip and workpiece. This paper focuses on the design of a vibratory tool following by experimental and numerical approaches to study the influence of longitudinal ultrasonic vibrations on drilling of aluminum alloy 7075. Experimental part is a comprehensive exercise to design, fabricate, and test a system equipped with different instruments to work in desired conditions. Experimental results are supported by a finite element method to better comprehend what is happening in cutting process when ultrasonic vibrations are added. The achieved results prove that using ultrasonic-assisted drilling (UAD), the machining ability of drilled aluminum workpiece can enhance significantly. Improvement of up to 40% for drill circularity and a reduction of up to 37% in thrust force were achieved.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Apr 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off