Ultrasensitive fluorometric glutathione assay based on a conformational switch of a G-quadruplex mediated by silver(I)

Ultrasensitive fluorometric glutathione assay based on a conformational switch of a G-quadruplex... The authors describe a silver(I) mediated fluorescent assay for glutathione (GSH). An allosteric oligonucleotide strand containing a G-rich sequence is used to produce a G-quadruplex, and N-methylmesoporphyrin IX (NMM) is chosen as the fluorescent probe. In the absence of Ag(I), the DNA strand is partially intramolecularly hybridized to form a hairpin structure wherein the G-rich sequence is partially caged. On addition of Ag(I), the hairpin is disrupted by forming C-Ag(I)-C base pairs. As a result, the G-rich sequence is released and folds into a G-quadruplex structure, which is able to bind NMM to generate strong fluorescence at 612 nm. However, in the presence of GSH, due to the strong binding ability between GSH and Ag(I), the C-Ag(I)-C structure is not formed. Hence, the DNA probe reverts back to its original structure and fluorescence is not increased. Based on these findings, a method was worked out that has a detection limit as low as 3.5 nM. Due to the inherent selectivity of the interaction between GSH and Ag(I), the method is highly selective over common potential interfering species. It was successfully applied to the fluorometric determination of GSH in cell extracts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Ultrasensitive fluorometric glutathione assay based on a conformational switch of a G-quadruplex mediated by silver(I)

Loading next page...
 
/lp/springer_journal/ultrasensitive-fluorometric-glutathione-assay-based-on-a-Dy8Npo1oTT
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-017-2343-8
Publisher site
See Article on Publisher Site

Abstract

The authors describe a silver(I) mediated fluorescent assay for glutathione (GSH). An allosteric oligonucleotide strand containing a G-rich sequence is used to produce a G-quadruplex, and N-methylmesoporphyrin IX (NMM) is chosen as the fluorescent probe. In the absence of Ag(I), the DNA strand is partially intramolecularly hybridized to form a hairpin structure wherein the G-rich sequence is partially caged. On addition of Ag(I), the hairpin is disrupted by forming C-Ag(I)-C base pairs. As a result, the G-rich sequence is released and folds into a G-quadruplex structure, which is able to bind NMM to generate strong fluorescence at 612 nm. However, in the presence of GSH, due to the strong binding ability between GSH and Ag(I), the C-Ag(I)-C structure is not formed. Hence, the DNA probe reverts back to its original structure and fluorescence is not increased. Based on these findings, a method was worked out that has a detection limit as low as 3.5 nM. Due to the inherent selectivity of the interaction between GSH and Ag(I), the method is highly selective over common potential interfering species. It was successfully applied to the fluorometric determination of GSH in cell extracts.

Journal

Microchimica ActaSpringer Journals

Published: Jun 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off