Ultrasensitive aptasensing of lysozyme by exploiting the synergistic effect of gold nanoparticle-modified reduced graphene oxide and MWCNTs in a chitosan matrix

Ultrasensitive aptasensing of lysozyme by exploiting the synergistic effect of gold... The authors describe a lysozyme aptasensor based on the use of gold nanoparticles (AuNP) assembled on the carbon nanotubes, graphene oxide and chitosan. An electrochemical impedance spectroscopic study was performed to demonstrate the synergistic effect of the MWCNT-AuNP, Chit-AuNP and GO-AuNP composites and the order of the layers affect the performance of aptasensing. Different parameters were optimized in order to obtain successful and sensitive detection of lysozyme in urine and saliva samples. A plot of charge-transfer resistance versus the logarithm of the lysozyme concentration is linear in the 0.02 to 250 pM concentration range, with a 9 fM detection limit (at an S/N ratio of 3). The aptasensor is highly specific and selective. Clinical analyses were performed and data were found to be in good agreement with those obtained by HPLC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Ultrasensitive aptasensing of lysozyme by exploiting the synergistic effect of gold nanoparticle-modified reduced graphene oxide and MWCNTs in a chitosan matrix

Loading next page...
 
/lp/springer_journal/ultrasensitive-aptasensing-of-lysozyme-by-exploiting-the-synergistic-PLXkUYjZNF
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-017-2356-3
Publisher site
See Article on Publisher Site

Abstract

The authors describe a lysozyme aptasensor based on the use of gold nanoparticles (AuNP) assembled on the carbon nanotubes, graphene oxide and chitosan. An electrochemical impedance spectroscopic study was performed to demonstrate the synergistic effect of the MWCNT-AuNP, Chit-AuNP and GO-AuNP composites and the order of the layers affect the performance of aptasensing. Different parameters were optimized in order to obtain successful and sensitive detection of lysozyme in urine and saliva samples. A plot of charge-transfer resistance versus the logarithm of the lysozyme concentration is linear in the 0.02 to 250 pM concentration range, with a 9 fM detection limit (at an S/N ratio of 3). The aptasensor is highly specific and selective. Clinical analyses were performed and data were found to be in good agreement with those obtained by HPLC.

Journal

Microchimica ActaSpringer Journals

Published: Jun 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off