Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors

Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for... Amorphous Ni-Mn bimetallic hydroxide film on the three-dimensional nickle foam (NF)-supported conductive Ni3S2 nanosheets (denoted as Ni-Mn-OH@Ni3S2/NF) is successfully synthesized by an ultrafast process (5 s). The fascinating structural characteristic endows Ni-Mn-OH@Ni3S2/NF electrodes better electrochemical performance. The specific capacitance of 2233.3 F g−1 at a current density of 15 A g−1 can achieve high current density charge and discharge at 20/30 A g−1 that the corresponding capacitance is 1529.16 and 1350 F g−1, respectively. As well as good cycling performance after 1000 cycles can maintain 72% at 15 A g−1. The excellent performance can be attributed to unique surface modification nanostructures and the synergistic effect of the bimetallic hydroxide film. The impressive results provide new opportunity to produce advanced electrode materials by simple and green route and this material is expected to apply in high energy density storage systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors

Loading next page...
 
/lp/springer_journal/ultrafast-surface-modification-of-ni3s2-nanosheet-arrays-with-ni-mn-Pl2XWECBq0
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-22448-w
Publisher site
See Article on Publisher Site

Abstract

Amorphous Ni-Mn bimetallic hydroxide film on the three-dimensional nickle foam (NF)-supported conductive Ni3S2 nanosheets (denoted as Ni-Mn-OH@Ni3S2/NF) is successfully synthesized by an ultrafast process (5 s). The fascinating structural characteristic endows Ni-Mn-OH@Ni3S2/NF electrodes better electrochemical performance. The specific capacitance of 2233.3 F g−1 at a current density of 15 A g−1 can achieve high current density charge and discharge at 20/30 A g−1 that the corresponding capacitance is 1529.16 and 1350 F g−1, respectively. As well as good cycling performance after 1000 cycles can maintain 72% at 15 A g−1. The excellent performance can be attributed to unique surface modification nanostructures and the synergistic effect of the bimetallic hydroxide film. The impressive results provide new opportunity to produce advanced electrode materials by simple and green route and this material is expected to apply in high energy density storage systems.

Journal

Scientific ReportsSpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off