Ubiquitous downregulation of InR gene expression affects stress associated hormone metabolism in Drosophila females

Ubiquitous downregulation of InR gene expression affects stress associated hormone metabolism in... The effect of the ubiquitous downregulation of insulin receptor (InR) gene expression on the metabolism of juvenile hormone (JH) and dopamine (DA) in young females of D. melanogaster under normal conditions and heat stress is studied. The level of JH degradation and alkaline phosphatase activity (ALP, an enzyme regulating DA synthesis) were used as indicators of JH and DA levels, respectively. We demonstrated that, under normal conditions, the ubiquitous inhibition of the InR gene expression in D. melanogaster females induced an increase in the JH degradation and ALP activity. As we have already shown, this is indicative of the decrease in the concentration of the above hormones. It was also found that the total inactivation of InR does not affect the initiation of JH and DA metabolic system response to heat stress; however, it does affect its intensity. Thus, the involvement of the insulin signaling pathway in the regulation of the JH and DA metabolism in Drosophila females was demonstrated in vivo under normal and stress conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Ubiquitous downregulation of InR gene expression affects stress associated hormone metabolism in Drosophila females

Loading next page...
 
/lp/springer_journal/ubiquitous-downregulation-of-inr-gene-expression-affects-stress-WYV0sCwG1m
Publisher
Springer US
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795413050037
Publisher site
See Article on Publisher Site

Abstract

The effect of the ubiquitous downregulation of insulin receptor (InR) gene expression on the metabolism of juvenile hormone (JH) and dopamine (DA) in young females of D. melanogaster under normal conditions and heat stress is studied. The level of JH degradation and alkaline phosphatase activity (ALP, an enzyme regulating DA synthesis) were used as indicators of JH and DA levels, respectively. We demonstrated that, under normal conditions, the ubiquitous inhibition of the InR gene expression in D. melanogaster females induced an increase in the JH degradation and ALP activity. As we have already shown, this is indicative of the decrease in the concentration of the above hormones. It was also found that the total inactivation of InR does not affect the initiation of JH and DA metabolic system response to heat stress; however, it does affect its intensity. Thus, the involvement of the insulin signaling pathway in the regulation of the JH and DA metabolism in Drosophila females was demonstrated in vivo under normal and stress conditions.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jul 12, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off